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FOREWORD

WE LIVE in an age of growing interest in the history of science. The 
reasons  for  this  are  many  and  often  obscure,  but  surely  our 
increasingly complex technology and the questions it has raised 
about itself are among the most important. Laymen, even more 
than  specialists,  are  interested  in  the  history  of  science  upon 
which that technology is based.

Of all the branches of technology, the computer looms largest 
in the average person’s view. The rise of the computer in a very 
short time has been spectacular, and no end is in sight. For this 
reason,  both  the  history  of  computing  and  the  history  of  the 
binary system in which computers work are of great interest. The 
binary system is now constantly taught in schools to illustrate, by 
contrast, the standard decimal system.

Binary notation is involved in a number of different aspects of 
computers. Most computers use both computer binary arithmetic 
and binary logic extensively. Although often hidden slightly, the 
arithmetic  of  finite  fields  of  characteristic  two—simply  binary 
arithmetic  without  the  carry—is  also  used  in  the  format  error 
checking codes of computers.

This book is the first carefully researched history of the binary 
literature.  Not  only  does  it  cover  binary  arithmetic,  it  also 
includes a number of related topics such as arithmetic in the bases 
4, 8, 10, 12, 20, and 60. The base 12, the duodecimal system, is of 
particular interest because of its many passionate devotees who 
have long wanted all of our number system converted to it. Thus 
this book makes a significant contribution to our understanding of 
the complex world in which we live.

RICHARD W. HAMMING
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· I ·
INTRODUCTION

DURING THE last  two  decades,  nondecimal  numeration,  such  as 
binary  and  duodecimal,  has  become  a  popular  topic  in  the 
mathematics programs of many primary and secondary schools in 
the  United  States.  The  purpose  of  this  study  is  to  trace  the 
development  of  nondecimal  numeration  from  the  sixteenth 
century to the present. The mathematician W. W. Sawyer, who 
was  educated  in  England  and  who  has  been  active  in  teacher 
education in the United States, wrote in 1964:

The idea that the writing of numbers need not be based on 10 
is not a new one. How old it is I do not know. It was certainly 
current  in  the  1880s;  Hall  and  Knight’s  School  Algebra and 
Higher  Algebra both  contain  chapters  on  this  subject.  In  the 
1940s Leicester Teacher Training College required their students 
to  work  out  how  the  multiplication  tables  and  other  parts  of 
arithmetic  would  have  looked  if  we  had  possessed  8  fingers 
instead of 10. Recently the study of ‘bases other than 10’ became 
very popular in the United States. The use of the binary scale in 
electronic computers helped to bring it back into fashion.1

The first large-scale electronic digital computer making use of 
binary numeration appeared in the late 1940s. By 1953 Phillip S. 
Jones could report:

The  binary  system  as  a  special  case  of  the  generalized 
problem of scales  of notation has had a sudden resurgence of 
popularity. This is largely due to its use in modern high-speed 
electronic calculators and in the new developments in the theory 
of  “information”  and  “communication.”  However,  this  new 
utility of the binary system arrived at the same time that an even 
greater emphasis was being placed on ‘meaning’ and
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‘understanding’ in the teaching of mathematics. In arithmetic 
(and algebra) many teachers have felt that understanding of 
our  number  system was  enhanced,  and in  some cases  first 
achieved, through a study of numbers written to some base 
other than ten.2

In 1957 the Commission on Mathematics recommended that 
one of the goals of seventh and eighth grade arithmetic should be 
“The understanding of a place system of numeration with special 
references to the decimal system and the study of other bases, 
particularly  the  binary  system.”3 This  recommendation  was 
seconded by the  School  Mathematics Study Group (SMSG) in 
1959 when it observed that

since in using a new base the student is forced to look at the 
reasons for ‘carrying’ and the other mechanical operations in a 
new light, he should gain deeper insight into the decimal system. 
A certain amount of computation in other systems is necessary to 
fix these ideas but such computation should not be regarded as 
an end in itself.4 

In  1961  the  National  Council  of  Teachers  of  Mathematics 
added its weight to these recommendations and also emphasized 
the  pedagogical  rather  than  the  utilitarian  (applications  to 
computers) benefits of nondecimal numeration.

The  possible  utilitarian  benefits  of  a  study  of  nondecimal 
numeration are not totally absent even for a social scientist who 
expects  to  make only  occasional  use  of  a  computer  through a 
FORTRAN  type  language.  Daniel  D.  McCracken  initially 
encouraged the contrary view in his  1961 booklet,  A Guide to 
FORTRAN  Programming: “We,  however,  are  not  required  to 
study binary numbers, since FORTRAN handles conversions between 
binary  and  decimal.”5 But  by  1965  McCracken  relented  and 
discussed some of the unpleasant surprises that may be in store 
for the FORTRAN user ignorant of the binary system.6

It  is  not  surprising  that  the  double  revolution  in  school 
mathematics  and  computers  caught  most  American  teachers 
without  a  knowledge of  nondecimal numeration.  Having never 
heard of this topic during their own school days, they
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now  had  to  master  it  as  adults.  After  all,  since  the  sixteenth 
century,  the  decimal  (i.e.,  Hindu-Arabic)  system had  been  the 
system for representing numbers in Western civilization, so much 
so,  that  the  word  ‘number’  had  come  to  mean  ‘decimal 
representation’  as  well.  The  residual  use  of  Roman  numerals 
hardly  seemed  relevant.  Indeed,  as  E.  T.  Bell  reminded  us, 
“neither the Hindu numerals nor any others are of any importance 
whatever in vast tracts of modern mathematics.”7 As Bell saw it, 
their importance lies in computation, which comes only after the 
mathematics is done, and where the decimal numerals have been 
serving  well—certainly  better  than  the  Roman  numerals  had 
done.

If elementary and secondary teachers were being retrained to 
teach nondecimal numeration, it also made sense to modify the 
original  training  of  teachers.  The  Committee  on  the 
Undergraduate  Program  in  Mathematics  recommended  in  the 
early 1960s “that decimal and nondecimal systems be studied” by 
future elementary teachers.8

These  various  recommendations  were  not  ignored—at  least 
not by the publishers—as will be seen in the survey of selected 
textbooks included in Chapter 8. Perhaps the recommendations 
were mere symptoms of the revolution and not causes of it, as 
must be reckoned the continued publicity enjoyed by the . binary 
system as a key to computers and other information machines. 
The  mid-1960s  seemed  to  bring  a  crescendo  of  such  public 
references, two of which shall  be mentioned in particular here. 
One was Time magazine’s account of the Mariner IV mission that 
resulted  in  the  first  photographs  of  Mars  being  transmitted  to 
Earth.

Each picture was made up of 200 lines—compared with 525 
lines on commercial TV screens. And each line was made up of 
200  dots.  The pictures were held  on the  tube  for  25 seconds 
while they were scanned by an electron beam that responded to 
the light intensity of each dot. This was translated into numerical 
code with shadings running from zero for white to 63 for deepest 
black. The dot numbers were recorded in binary code of ones 
and  zeros,  the  language  of  computers.  Thus  white  (0)  was 
000000, black (63) showed up as 111111. Each picture—
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actually 40,000 tiny dots encoded in 240,000 bits of binary code
—was stored on magnetic tape for transmission to Earth after 
Mariner had passed Mars. More complex in some respects than 
the direct transmission of video data that brought pictures back 
from  the  moon,  the  computer  code  was  necessary  to  get 
information accurately all the way from Mars to Earth.9

The other was the Bell System exhibit at the New York World’s 
Fair of 1964–65, that featured a number translator about the size 
of a pinball machine. One could push buttons for, say 1964, and 
the machine would display not  only ‘1964’ but  also its  binary 
equivalent, 11110101100, and its equivalent in Roman numerals, 
MCMLXIV. A sign on this machine declared:

The number translator is an example of what takes place each 
time you dial a call. Telephone equipment translates the number 
dialed to simple “1”’s and “0”’s which operate other switches to 
convert your call.10

Although  this  information  is  somewhat  misleading,  as  will  be 
shown in  Chapter  7,  the  idea  that  strings  of  binary  digits  are 
involved is correct. Bell repeated this same message on a nearby 
wall.

yes
no
1
0

on
off

the electronic
language of

computers and
communications

machines

The 1960s also saw many parents attending evening school to 
learn  some  of  the  new  school  mathematics,  which  usually 
included  a  heavy  portion  of  nondecimal  numeration.  Also  the 
parents could choose from a number of books, such as E. Begle’s 
Very Short Course in Mathematics for Parents. This
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book devotes 21 of its 53 pages to nondecimal numeration, but is 
Unusual in not including the words “new” or “modern” in its title.
 

A  careful  survey  of  existing  publications  indicates  that  no 
historically  oriented,  self-contained  overview  of  modern 
nondecimal  numeration  systems  exists.  Such  an  overview  is 
needed, not to give the topic further momentum, but to lay the 
foundation of sound judgment about the extent and quality of its 
penetration into school mathematics. As Friedrich Unger wrote:

He who wants to become master in his field should study its 
history.  Without  historic  foundation  all  knowledge  remains 
incomplete and the judgment about appearances of the present 
unsure and immature.11

This work is a library study concerned with the literature on 
numeration  systems,  primarily  nondecimal  ones.  It  deals  with 
standard numeration systems, i.e.,  those patterned exactly after 
our common Hindu-Arabic system with ten’s role taken over by 
some base β, where β is any whole number greater than one. Only 
those  nonstandard  systems  that  have  found  applications  in 
computers or other information machines—or that are otherwise 
particularly relevant—are included. The study covers the period 
from the latter part of the sixteenth century to the present. Some 
of the earlier literature on this topic is in foreign languages and 
calls for resumes in English. Many of the publications prior to 
1870 are difficult to obtain.

A numeration system is a system of number representation. It 
shall be called standard if it is our common Hindu-Arabic system 
or one exactly patterned after it, except for giving the special role 
of ten to another positive integer greater than one.

A standard numeration system is thus characterized by:
1. having β basic symbols, called digits, one for each of the β 

integers 0, 1, ..., (β-l).
2. having a whole number N greater than (β-1) represented
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by a string of digits, anan-1...a1a0, this string being an abbreviation 
for

an βn + an -1βn-1 + ... + a1β0

which  is  known as  the  expanded  form (to  the  base  β)  of  the 
number N.

Our common Hindu-Arabic system, which has  β = 10, shall 
usually be referred to as the  decimal or  base 10 system. In the 
string  of  digits,  an...a0,  each  digit  ai has  the  place  value  βi 

associated with it. The number β is known as the base or radix of 
the  system.  If  the  context  fails  to  make  clear  which  base  is 
intended,  β can  be  identified  (in  words  or  decimally)  as  a 
subscript at the end of the string, thusly, 

N = (an...a0)β

It  is  convenient  but  not  essential  to  use  the  first  β Hindu-
Arabic numerals for digits, these can then be augmented by letters 
for  β greater  than  ten.  When  each  digit  is  itself  a  compound 
symbol,  commas  are  inserted  between  digits,  resulting  in  the 
usual notation from the field of number theory: 

N = (an, an-1, ..., a1, a0)β

it is being understood that each digit is represented decimally.
To illustrate the notation,

98 = (1 100 010)2 = (1,38)60

and if K = the number of seconds in one day, then

k = (24,0,0)60 and k – 1 = (23,59,59)60 

Among the principle sources of material for this study were 
Herbert  McLeod’s,  William  Schaaf’s,  and  Lewis  Seelbach’s 
bibliographies.12 McLeod’s  was  restricted  to  articles  that  had 
appeared  in  scholarly  journals,  in  whatever  language,  during 
1771–1900. It had 47 items under “Scales of Notation.” Schaaf’s 
had twice that many, and included many books as well as articles. 
All  of  Schaaf’s  material  is  in  English,  and  most  of  it  was 
published after 1900, from sources like The
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Mathematics  Teacher and  School  Science  and  Mathematics. 
Seelbach’s “Duodecimal Bibliography” was the most catholic in 
taste and the only one to be annotated. It included publications of 
many types and in many languages from 1585–1952. Fortunately 
the Seelbach bibliography, despite its title, did not restrict itself 
entirely to the duodecimal system. Of the over 350 publications 
listed therein, some were there by virtue of containing a single 
line  favorable  or  unfavorable  to  duodecimals,  while  others 
contained  over  50  pages  of  serious  discussion  of  numeration 
systems in general.

Many of the items in the above three bibliographies provided 
additional  references.  Especially  fruitful  were  the  books by 
Wilhelm  Ahrens  and  Leonard  Dickson.13 Ahrens’s  chapter  on 
numeration systems represents the most serious previous attempt 
at  a  self-contained,  historically  oriented  survey  of  modern 
numeration  systems.  Dickson’s  first  volume  of  History  of  the 
Theory  of  Numbers does  not  treat  numeration  systems  as  a 
separate  topic,  but  nevertheless  provides  many  references—
especially  in  Chapter  VI  (“Periodic  Decimal  Fractions;  Period 
Fractions; Factors of 10n ± 1”) and Chapter XX (“Properties of 
the Digits of Numbers”).

Two  smaller  works,  one  unpublished,  give  a  wealth  of 
references  out  of  proportion  to  their  size.  One  is  Raymond 
Archibald’s  article  in  the  American  Mathematical  Monthly of 
March,  1918,  the  other  a  spirit-duplicated  study  guide  which 
Jones had prepared.14

The  sources  used  for  materials  involving  applications  to 
computers will be identified in Chapter 7.
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· II ·
BEFORE LEIBNIZ

THOMAS HARIOT1 (1560-1621)

The English mathematician and astronomer, Thomas Hariot, 
left several thousand pages of unpublished manuscripts.2 On one 
of these there appears, without comment, the
following:

The  next  hundred  pages  of  the  manuscript  show  a 
preoccupation  with  various  techniques  of  tabulating  all 
combinations (nonempty subsets) of n things—for n = 1, 2, 3, 4, 
and 5—followed by a prominent “etc.” At first such tabulations 
were organized as follows:
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Hariot’s second tabulating technique came a few pages later. 
Again, he displayed all cases from n = 1 to n = 5, followed by 
“etc.” To illustrate his new technique, it suffices to show the case 
of n = 3:



Apparently Hariot imagined the columns headed by a, b, and 
c,  interpreted  “+”  as  “yes,  this  letter  is  included  in  the 
combination,”  and  “–”  as  “no,  it  is  not.”  While  Hariot’s  new 
technique  brought  a  tabulation  of  8  subsets  of  a  set  having  3 
members, he preferred to count only the 7 nonempty ones or at 
least his bracket and his “7” seem so to indicate.

Eventually  Hariot  gravitated  toward  a  third  tabulating 
technique:

Again,  the  “7”  and  the  bracketing  are  Hariot’s.  If  we  now 
interpret as above and furthermore interpret a = 4, b = 2, and c = 1 
and assign to each of the 8 subsets that number which is the sum 
of its elements, then we find the subsets listed in good order from 
7 to 0.

Hariot’s preoccupation with the numbers 1, 3, 7, 15, and 31 
(each of the type 2n-1) as being associated with sets having 1, 2, 
3,  4,  and  5  members  respectively,  and  his  vigorous  “etc.’s,” 
suggest that he was aware of

Theorem 2.1: There are 2n-1 combinations (nonempty subsets)  
of n things.

As he  had  also  displayed  how each  of  the  first  31  natural 
numbers can be expressed as the sum of some combination of the 
5 powers of 2 (1, 2, 4, 8, and 16), he apparently knew

Theorem 2.2:  The  natural  numbers  from 1  to 2n-1  can  be 
expressed as the sum of some combination of the first n members 
of the set {1, 2, 4, 8, 16, ...}.

Whether he followed this path or some other, the fact is, other 
pages of his manuscript show that he knew what we today call the 
binary numeration system or “base two.”3 He
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displayed, for example, 1101101, as the binary equivalent of 109, 
since binary 1101101 = 1·64 + 1·32 + 0·16 + 1·8 + 1·4 + 0·2 + 1·1 
= 64 + 32 + 0 + 8 + 4 + 0 + 1 = 109. He gave examples of 
addition,  multiplication,  and  subtraction  with  every  number 
expressed in binary notation.

Before 1951, when J. W. Shirley reported on his examination 
of  unpublished Hariot  manuscripts  (of  ca.  1600),  it  was  either 
Leibniz  (1703)  or  Bishop  Juan  Caramuel  y  Lobkowitz  (1670) 
who  was  given  credit  for  having  first  discovered  the  binary 
system.  English  language  references,  however,  have  generally 
seemed unaware of Lobkowitz’s claim.

SIMON STEVEN (1548–1620)

Edouard Lucas wrote in 1891:

Simon Stevin of Bruges (died in 1633) had at  one time 
proposed  the  duodecimal  system  of  numeration,  to  match 
more nearly with our way of counting the months of the year, 
the hours of the day, and the degrees of the circumference; 
but  the  change  of  the  system  would  actually  produce  too 
much inconvenience in relation to the small advantages which 
would result from twelve as the base.4

Ahrens mentioned Stevin as a duodecimal advocate in 1901.5 

However, my examination of the applicable portions of Stevin’s 
Les  oeuvres  mathematique yielded  no  confirmation.  Ahrens 
eventually concluded that Lucas had been in error and indicated 
so in the 1910 edition of his book.6

Even if it should be proven that Lucas’s claim has some basis 
in  fact,  there  is  no  doubt  that  Stevin’s  dominant  efforts  went 
toward further  decimalization. He extended decimal numeration 
to  fractions  and  even  decimalized  the  system  of  weights  and 
measures. Stevin certainly succeeded in the former. D. J. Struik 
reports  that  “Decimal  fractions  became  a  regular  part  of  the 
curriculum in arithmetics as a result of the 1585 De Thiende by 
Simon Stevin.”7

It was not for lack of effort that there was to be a 200-year 
delay in reaching the latter aim in continental Europe, for Stevin 
sternly demanded that the governments of Europe decimalize
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immediately,  otherwise  “a  future  generation  would  surely~not 
pass up so great an advantage.”8

FRANCIS BACON (1561–1626)

According  to  David  Kahn’s  The  Codebreakers,9 Bacon 
published his  De Augmentis  Scientarum in  1623.  In  this  work 
appears what Bacon called a “bi-literal” code for 24 letters of the 
alphabet (i and v were also serving in the place of j and u at that 
time), but what today would be called a 5-bit code. The letter t, 
for  example,  was assigned  to  the  5-bit  string 10010,  or  rather 
BAABA, since Bacon used A and B instead of 0 and 1. Similarly, 
a = AAAAA = 00000. Moreover, Bacon used precisely the strings 
from 00000 (0)  to  10111 (23) in their  proper numerical  order. 
Further discussion of this appears in Chapter 7.

CLAUDE-GASPAR BACHET (1581–1638)

According to Underwood Dudley, Bachet’s 1624 (2nd) edition 
of  Problèmes plaisants et délectables first introduced “Bachet’s 
Problem of the Weights,” namely:

Find  a  series  of  weights  with  which  one  can  make  all 
weighings in integer numbers from one to as far as the sum of 
the weights.10

Many later writers, Leibniz (1703) and Barlow (1811) among 
them, connected the solution to this problem with bases 2 and 3. 
More of this later.

BLAISE PASCAL (1623–1662)

“De numeris multiplicibus,” occupying 13 pages in Pascal’s 
Oeuvres,11 was presented to the Academie Parisienne in 1654 and 
first  published  in  1665  as  a  supplement  to  Traité du  triangle  
Arithmétique. Johannes Tropfke, who was of course unaware of 
Hariot’s  work,  called  this  13-page  paper  “the  first  scientific 
treatment of other number systems than the decimal.”12
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As  its  title  promises,  the  paper  deals  with  divisibility 
properties  of  numbers  deduced  from  the  sum  of  their  digits. 
Pascal  began  by  stating  that  “nothing  is  better  known  in 
arithmetic than the proposition according to which any multiple 
of 9 is composed of digits whose sum is also a multiple of 9.” He 
then  proceeded  to  give  several  examples,  after  which  he 
continued:

As much as this rule is commonly used, I do not believe that 
anyone up to the present has given a demonstration of, or has 
even  searched  for,  a  generalization  of  this  principle.  In  this 
paper, I will justify the divisibility rule for 9 and several similar 
rules; I will also reveal a general method which permits one to 
know by simple inspection of the sum of its digits, if  a given 
number  is  divisible  by  another  number,  whatever  it  be;  this 
method applies not only to our decimal system of numeration (a 
system established not out of natural necessity, as is commonly 
thought, but by convention, a rather poor one at that) but to any 
system of numeration of whatever base.

With  the  preliminary  remarks  thus  ended,  Pascal  stated,  in 
substance:

Theorem 2.3:  The number N = an...a0 is divisible by K if and 
only if the test number T is divisible by K, where

T = a0 + a1R1 + ... + anRn

and where the Ri’s are found as follows:

Divide K into 10 to obtain the remainder R1

Divide K into 10R1 to obtain the remainder R2

...
Divide K into 10Rn to obtain the remainder Rn

In the awkward notation of his day, Pascal required two pages 
for stating this theorem before proceeding to a proof of the same 
length. He first noted that if N = a0, then T = a0 and the theorem is 
self-evident. After covering the cases for 2 and 3-digit numbers, 
he remarked that “The demonstration would be the same if the 
given number were composed of more than three digits.” Below 
is the substance of Pascal’s proof for N = a1a0:
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Proof  of  Theorem 2.3:  (case  N  =  a1a0):  Given  that  N  is  a 
multiple of K, i.e., N = a0 + 10a1 = Kp for some integer p. Since 
10 = Kx + R1 and R1 = 10 – Kx for some integer x, it follows that 
T = a0 + R1a1 = a0 + (10 – Kx)a1 = a0 + 10a1 – Kxa1 = Kp – Kxa1 = 
K(p – xa1), i.e., T is a multiple of K. Given on the other hand, that 
T is a multiple of K, i.e., T = Kg for some integer q, it follows 
that T = a0 + a1(10 – Kx) = N – Kxa0 = Kq and hence N = K(q + 
xa0), i.e., N is a multiple of K.

In effect, Pascal recommends that T be thought of as 

T = a0R0 + R1R1 + ... + RnRn 

with  R0 = 1.  This leaves the  substance of  the  theorem and its 
proof  intact  and  has,  as  will  be  seen,  more  than  the  evident 
mnemonic advantage. Pascal points out that the Ri’s depend only 
on K and not N. For example, for K = 7 the following Ri’s result:

  i  0  1  2  3  4  5  6  7  8  9  10 11 .  .  .

     Ri 1  3  2  6  4  5  1  3  2  6  4  5  .  .  .

where 132645 keeps repeating.
Pascal then spends more than a page to illustrate the theorem 

for N = 287542178 and K = 7. He shows that T(N) = 119 and that 
a second application would yield T(119) = 14. Should one fail to 
recognize this as a multiple of 7 one could apply the theorem a 
third time to  give T(14)  = 7,  which is  evidence of  N being a 
multiple of 7. The next four pages of Pascal’s paper give further 
examples, although all are still restricted to decimal numeration. 
Among the facts developed there are these: 

For K = 6 , Ri =1, 4, 4, 4, . . .  for i = 0, 1, 2, 3... 
K = 3 1 1 1 1 . . .
K = 9 1 1 1 1 . . .
K = 4 1 2 0 0 0 0 0 . . .
K = 8 1 2 4 0 0 0 0 . . .
K = 16 1 10 4 8 0 0 0 . . .
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all of which result in expressions for T that are simpler than in the 
case of K = 7 and are especially simple for K = 3 and K = 9. 
Finally Pascal writes:

The divisibility properties of numbers deduced from the sum 
of  their  digits  rests  simultaneously  on  the  inherent  nature  of 
numbers  and  their  representation  in  the  decimal  system  of 
numeration. In all other systems, for example in the duodecimal 
system (a most convenient one indeed) which aside from the first 
nine digits,13 uses two new symbols, in order to designate the 
number  10  with  the  one  and  11  the  other,  in  this  mode  of 
numeration, it would no longer be true that all numbers whose 
digit sum is a multiple of 9 is itself a multiple of 9.

But  the  method  that  I  have  made  known  and  the 
demonstration which I have given are as suitable to this system 
as to any other.

Pascal  indicates  that  if  one  wished  to  know  the  Ri’s  in  this 
duodecimal system, one would interpret “10” as twelve (no longer 
ten) and “30” as three times twelve and the following Ri’s would 
result: Ri = 1, 3, 0, 0, 0, ..., i.e., one would have to examine only 
the last two digits of N and merely test T = a0 + 3a1 for divisibility 
by 9. Pascal concluded: 

One  would  also  know  that,  in  this  same  system  of 
numeration,  every  number  whose  digit  sum  is  a  multiple  of 
eleven is itself a multiple of eleven.

In our decimal system in contrast, to test for divisibility by 
eleven, it  would be necessary that the sum formed by the last 
digit, reduced by the next-to-last, then the preceding, reduced by 
the preceding, etc., be a multiple of eleven.

It would be easy to justify these two rules and to obtain some 
others. But if I have touched on this subject at all, it is because I 
would gladly yield to the lure of novelty, but I restrain myself, 
lest I tire the reader by too much detail. 

Table  1  contains  Pascal’s  announced  results  stated  as 
numbered theorems in analytic form for the convenience of later 
referral. The first one, Theorem 2.4, is the principal new result 
while the remaining ones are special cases of it. At least one of 
these (Theorem 2.8) admittedly predates Pascal.
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TABLE 1

Divisibility Theorems Referred to by Pascal
in his “De Numeris Multiplicibus” of 1665

Given that N = (an...a0)β, R0 = 1, and that Ri is the remainder when 
K is divided into βRi-1 for each i = 1, 2, ..., n, then N is a multiple 
of K if and only if T is a multiple of K, where

NOTE: Ts and Ta are defined by the identities shown in the 
table  and  may  be  called  simple and  alternating digit  sum, 
respectively.
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JUAN CARAMUEL Y LOBKOWITZ (1606–1682)

The  chapter  entitled  “Meditatio”  in  his  Mathesis  biceps of 
1670 gives  evidence that  the  learned Bishop Juan  Caramuel  y 
Lobkowitz did indeed yield to the “lure of novelty.”14 Two and a 
half pages are devoted to binary arithmetic. These are followed by 
separate treatments of bases 3, 4, 5, 6, 7, 8, 9, 10, 12, and 60. 
Base  2  had  (like  any  possible  base)  been  implicit  in  Pascal’s 
paper,  although  certainly  not  displayed.  Hariot’s  manuscripts 
were not yet published, while Bacon’s work was “binary” only 
through  suitable  interpretation,  so  the  honor  of  the  first 
publication explicitly on binary arithmetic goes to Caramuel.

Tropfke  considered  “Meditatio”  to  be scientific  and 
independent of Pascal’s work.15 Moritz Cantor judged  Mathesis 
biceps to follow only well-worn paths except for the “Meditatio” 
chapter.16 In  contrast,  Pascal’s  Traité du  triangle  Arithmétique 
overshadowed the appended paper on nondecimal numeration. 

Caramuel’s contemporaries took so little  notice of his  work 
that  Leibniz was hailed as the discoverer  of  the binary system 
upon  publication  of  his  “Explication”  33  years  later  in  1703. 
Many investigators still cite this paper as the first published work 
on the topic.17 This technical error is justified in substance, for the 
test of true publication is the existence of reaction and follow-up, 
a test failed by Caramuel’s work.

At the beginning of “Meditatio” Caramuel asks:

Is there one arithmetic or many? If many, what are they and 
how does one distinguish among them? Are they useful or only 
speculative? Or necessary? What place should they occupy in the 
order of things?

In article I on binary arithmetic, he tabulated the binary and 
decimal representations for the numbers from 0 to 32. Since he 
uses “a” for “1” in the binary representation (unlike Hariot before 
and Leibniz after him) a0a0 = 10 and a0aa = 11. In a context 
involving only binary and decimal numeration, his notation has 
the obvious advantage that one cannot mistake a binary string for 
a decimal one.
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While contrasting the place values of the binary with those of 
the decimal system of numeration, Caramuel notes that the set of 
differences between successive members of {1, 2, 4, 8, is again 
that very set, whereas the set {1, 10, 100, 1000, ... } generates {9, 
90, 900, ... } as the corresponding difference set, i.e., it seems to 
him that doublings are more natural than ten-fold increases. In 
further support of this point he discusses the musical scale: do, re, 
mi,  ...,  do,  re,  mi,  ...,  where  successive  “dos”  involve  ratios 
1:2:4:8: and so on.

He gives a table of powers of 2, the first and last entries being:

1       0
1 125 899 906 842 624     50

Caramuel describes the columns as containing “natural numbers” 
and their corresponding “logarithms (artificial numbers).”

The note at the end of the article ranges far afield and then 
concludes that  while  musicians usually  are limited to  a 3  to  5 
cycle range (octaves), binary arithmetic cannot be limited to so 
small a  number of  cycles (doublings),  but must go on without 
end.

In the next 11 articles, each devoted to another base, Caramuel 
never tires of giving a table of the powers of β (except for β = 10) 
and does so at least up to the 7th power. In the case of  β = 3, 
having displayed up to the 18th power of 3, namely 387 420 489, 
he  notes that  this  power  may be obtained by squaring the  9th 
power,  19  683.  He  actually  shows  the  full  multiplication 
procedure  (in  decimal  arithmetic)  of  19683  × 19683,  partial 
products and all. Yet this amounts to nothing more than the fact 
that (39)2 = 318. He goes through a similar, long treatment with the 
table of powers of 7, showing in effect only that (74)2 = 78.

In each article, he treats the reader to an elaborate account of 
what comes to his mind when he thinks of the number β. For β = 
3 this includes the Holy Trinity, for β = 4 that the Pythagoreans 
seemed to favor 4, and for β = 5 that human beings
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have five  fingers  on  one hand.  The  number  4  has  the  longest 
commentary with almost 3 pages, 5 the shortest with only half a 
page.

For β = 4, Caramuel shows 27 = aei, since he uses 0, a, e, and 
i as the four quarternary digits. He shows no nondecimal base  β 
representations  after  β = 4  until  β =  60,  which  is  the  only 
nondecimal base for which he shows addition problems, such as 
the following one: 

Here he uses decimal representations for the sixty sexagesimal 
digits, whereas some later writers came to prefer a collection of 
symbols that included letters (capital as well as lower case), so 
that  the  digit  symbols would be simple  rather than compound. 
Row C shows some “over-loaded bases”; row D has Caramuel’s 
final answer. Caramuel’s errors have been preserved in the above 
example.

It is obvious that as a mathematician Caramuel was not Pascal. 
“Meditatio” is also disappointing in failing to show nondecimal 
multiplication, or even addition except for β = 60. Pascal’s paper 
does  not  show this  either,  but  compensates  for  it  by  giving  a 
powerful  general  divisibility  theorem  good  for  all  bases.  Yet 
“Meditatio”  has  the  honor  of  being  the  earliest  publication 
actually to display nondecimal numeration for bases less than 10.

ERHARD WEIGEL (1625–1699)

By  the  standards  established  by  Hariot  and  Pascal,  the 
mathematical content of Bishop Caramuel’s treatment of base 4 is 
small, but Professor (of mathematics) Weigel’s Tetractyn (1672), 
devoted exclusively to this base, offers little more.
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What saves Tetractyn from a quick dismissal as being merely 
a proper subset  of  “Meditatio” is  its special link with Leibniz, 
who studied under its author for half of the year 1663.18 Leibniz, 
who was 17 years old at the time, was later to refer to this work in 
connection with his own work on nondecimal numeration. G. E. 
Guhrauer credited Weigel with having introduced the teenager to 
arithmetic,  lower  analysis,  and  combinatorics.19 Florian  Cajori 
saw Weigel’s influence on some of the notation later chosen by 
Leibniz.20 Cantor was impressed with Weigel’s creative powers in 
elementary fields of mathematics,  but nevertheless thought him 
unworthy of a professorship, if only for being ignorant of recent 
mathematical advances such as the work of Descartes. The fact 
that Weigel could attract more than 400 students to his lecture 
entitled “Astrognostich-heraldisches Collegium” (which had to be 
held outdoors for lack of a hall that could hold that many) did not 
dissuade  Cantor  from  asking  in  disbelief,  “and  this  man  was 
Leibniz’s teacher?”21

If  Tetractyn outdoes  “Meditatio”  on  base  4,  it  is  not  in 
mathematical content, but in the commentary. The following is a 
sample:

Hierocles  as  well,  after  he  had  said  that  nature  herself 
continually  confines  herself  to  the  number  four,  and does not 
surpass that number in the greatest affairs, that is to say, in the 
elements, in the seasons, and other things of the year, . . . 22

Since Tetractyn was published under the auspices of the newly 
formed  Societas  Pythagorea, Thomas  Heath’s  comments  are 
pertinent:

To the Pythagoreans, 10 was the perfect number, since it was 
the  sum  of  1,  2,  3,  and  4,  the  set  of  numbers  called  the 
“tetractys.”  This  set  of  numbers  includes  the  numbers  out  of 
which  are  formed  the  ratios  corresponding  to  the  musical 
intervals,  namely 4:3 (the fourth),  3:2 (the fifth),  and 2:1 (the 
octave). Such virtue was attached to the tetractys that it was for 
the  Pythagoreans  their  “greatest  oath”  and  was  alternatively 
called “health.” It  also gives, when graphically represented by 
points in four lines one below the other,
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a triangular number.23

Although Weigel repeatedly pointed with pride to Tetractyn as 
his major work, its mathematical content is practically limited to 
the display on page 11 shown here.24

1. 2. 3. 10.
11. 12. 13. 20.
21. 22. 23. 30.
31. 32. 33. 100.

Weigel urged adoption of base 4 numeration for common use 
and later proposed the German names ERFF,  ZWERFF, and DREFF for 
quarternary 10, 20, and 30 respectively, and the names SECHT and 
SCHOCK for 100 and 1000.25

JOSHUA JORDAINE’S Duodecimal Arithmetick (1687)

Between two works of Weigel, published 21 years apart, there 
appeared Duodecimal Arithmetick by Joshua Jordaine. The author 
published the work himself in London and humbly arranged to 
have proceeds from its sale go directly to His Majesty’s treasury. 
The 300-page book’s preface begins:

He that  shall  but  duly  consider,  that  Duodecimals  are  the 
Foundation  of  all  our  English  Measures,  will  soon  see  that 
nothing  can  be  more  natural  and  genuine  for  the  finding  of 
Superficial and Solid Contents, than a Duodecimal Arithmetick . 
. . .

On his  title  page,  Jordaine assures  the wary reader that  the 
rules of this arithmetic are made “Plain and Easie for the meanest 
Capacity.”

To start with, Jordaine provides his readers with four tables to 
be used as references in duodecimal arithmetic.  The first  three 
give all  multiplication facts  (decimally)  up to  12  × 12 =  144. 
Table No. 4 is as follows:
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Jordaine adds:

Then  having  learnt  the  Three  first  Tables,  and  acquainted 
yourself well with the parts of the last, you must learn the use 
and  practise  of  those  parts;  for  which  purpose  you  must 
diligently observe, and perfectly learn these following Rules, viz.

Rule 1
To multiply any given number consisting of Integers, Primes, 

Seconds,  Thirds,  etc.  by  any  number  of  Primes  that  are  an 
Aliquot part of 12.

l. Example
6 Primes is the 1/2. Multiply 14--08′--10″ By 6 Primes

7--04′--05″ Facit

The  very  first  example  shows  that  Jordaine  fell  short  of 
standard duodecimal  numeration,  if  only  because  of  the  “14” 
which  exceeds  the  base.  Had  Caramuel  earlier  bothered  to 
actually  exhibit  instead  of  merely  discuss  duodecimals,  one 
suspects that he would have shown the number

14--08′--10″

as follows: 1′ 2 8′ 10″, consistent with what in fact he had done in 
the case of base 60.

Still earlier, if Pascal had gone beyond merely discussing base 
12 representations, and if the symbols A and B had been chosen 
to mean ten and eleven respectively, he would surely have shown 
this very number more compactly as 12.8A, where the period is 
used as a duodecimal point or fraction marker. In this notation, 
which is consistent with Pascal’s suggestions, Jordaine’s Example 
1 becomes:

12.8A × 0.6 = 7.45
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where Jordaine’s readers are encouraged to note that duodecimal 
0.6 is the same as 1/2. Indeed Rule 1 and certain later ones can be 
summarized as encouraging the use of facts derived from Table 4, 
such as:

6× 12n = 1
2
× 12n 1

Jordaine’s Rule 2 urges the reader to think of numbers that are 
not aliquot parts (not in Table 4) as the sum of 2 or more numbers 
which are. Thus 7 is to be thought of as 6 + 1, as the following 
example from p. 9 illustrates:

Multiply 10--10′--07″ By 7 Primes 
5 05 03 06
0 10 10 07 
6 04 02 01 Facit

With the help of Pascal’s notation, this is simply:

A.A7 × 0.7 = A.A7 × (0.6 + 0.1) 
= 5.536 + 0.AA7
= 6.421

Few of Jordaine’s numerous examples avoid overloading the 
unit’s  digit.  Three  of  them,  translated  into  Pascal’s  notation, 
follow:

Example 2, p. 13:    0.BBB
   0.11
      BBB
    BBB
0.10BAB

Example 1, p. 25: 8.89 / 4 = 2.223
Example 1, p. 13: 0.11 × 0.1 = 0.011

The overloading of the unit’s digit reaches a high in Example 
2 on p. 22: Multiply (6378--04--08″) By (349--06--09) to which, 
after  many details,  Jordaine  supplied  an answer  of  (2229645--
06′--09″--06″)
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Many  of  his  rules  are  simple  special  devices  to  facilitate 
computation. For example, he urged that division problems of the 
type  N/(1/2)  be  handled  as  a  multiplication  problem,  2  x  N. 
Similarly he asked his readers, in effect, to note that:

N/(1/3) = 3N
N/(5/8) = 8N/5

and that N/288 = (N/12)/6/4.
 

On page 50,  Jordaine  offered  a  procedure  for  converting  a 
decimal  fraction,  say  0.862,  into  its  equivalent  duodecimal 
fraction. 0.862 is to be multiplied by 12 to yield 10.344, and from 
this  product  the  integral  part  (10)  is  to  be  subtracted  to  yield 
0.344.  Now the  process  is  to  be  repeated,  i.e.,  0.344  is  to  be 
multiplied  by  12  to  yield  4.128.  Again  this  result  is  to  be 
multiplied by 12 to yield 1.536, and so on. The integral parts 10, 
4, 1, ... are the duodecimal digits, i.e.,

(0.862)10  = (0.A41...)12

This is Jordaine’s only example of conversion from a decimal 
to  a  duodecimal  fraction.  He  offers  no  justification  for  the 
procedure, but it may be noted that the problem is equivalent to 
finding  the  unknown  duodecimal  digits  a,  b,  c,  d,  ...  in  the 
following equation:

(1) 0.862 = (0.abcd...)12 = a/12 + b/(122) + ...

When (1) is multiplied by 12 it becomes:

(2) 10.344 = (a.bcd....)12 a + b/12 + ...

making it obvious that a = 10 = (A)12. After subtracting 10 = a 
from equation (2) the result is:

(3) 0.344 = (0.bcd...)12 

Each  subsequent  multiplication  by  12  will  serve  to  identify 
another one of the digits b, c, d, etc.

An analogous procedure for converting duodecimal to decimal 
fractions calls for repeated multiplication of the given
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fraction by ten and doing so “duodecimally.” Jordaine gave only 
one  example.  Translated  into  Pascal’s  notation,  it  appears  as 
follows. If the given duodecimal fraction is 0.843:

0.843 × A = 6.A66
0.A66× A = 9.750
0.750 × A = 6.220
0.220 × A = 1.980

Now the integral parts of the products serve to show that 

(0.843)12 = (0.6961...)10

The foregoing is a resume of the first 50 pages of Jordaine’s 
book. He goes on to cover mean proportion, square roots, cube 
roots, and the rule of three in the next 30 pages. Thereafter, i.e., 
pages  83–300,  he  shows  the  applications  of  duodecimal 
arithmetic  to  mensuration,  “gauging”  (which  includes  figuring 
how much lumber is needed to accomplish a certain task), and 
“cask gauging” (which includes finding the volume of conical and 
spheroidal casks).

None of the earlier writers that have been discussed dealt with 
fractions written to nondecimal bases, except possibly Caramuel, 
whose sexagesimal (24″ 36′ 52 49′ 56″) can be so interpreted. Did 
Jordaine realize that his duodecimal arithmetic could be extended 
to integers? If so, did he refrain from doing so because it might 
have interfered with its  application to  English measures?  Such 
measures  are  not  fully  duodecimalized,  since  there  is,  for 
example, no unit length equal to a dozen feet.

WEIGEL’S Philosophia Mathematica (1693)

In this book, published in 1693 in Jena, Weigel repeated much 
of his  earlier  work on base 4.26 A modest  advance beyond his 
earlier work can be noted in larger tables, the outline form of the 
commentary, and the inclusion of some base 4 multiplication and 
division examples, such as the following:
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This modest advance over his earlier work came too late to 
influence Weigel’s now famous former student. At the age of 47 
Leibniz  had  already  done  much  more  serious  work  with 
nondecimal  numeration  in  his  unpublished  manuscripts  of  the 
preceding 15 years.27
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· III ·
LEIBNIZ

LETTER TO THE DUKE (1697)

After wishing a Happy New Year to Rudolph August, Duke of 
Brunswick, Gottfried Wilhelm Leibniz (1646–1716) continued in 
his letter of January 2, 1697 as follows: 

And so that I won’t come entirely empty-handed this time, I 
enclose a design of that which I had the pleasure of discussing 
with  you  recently.  It  is  in  the  form  of  a  memorial  coin  or 
medallion;  and  though  the  design  is  mediocre  and  can  be 
improved in accordance with your judgment, the thing is such, 
that it  would be worth showing in silver now and unto future 
generations,  if  it  were  struck  at  your  Highness’s  command. 
Because  one  of  the  main  points  of  the  Christian  Faith,  and 
among those points that have penetrated least into the minds of 
the worldly-wise and that are difficult to make with the heathen 
is  the  creation  of  all  things  out  of  nothing  through  God’s 
omnipotence, it might be said that nothing is a better analogy to, 
or  even  demonstration  of  such  creation  than  the  origin  of 
numbers  as  here  represented,  using  only  unity  and  zero  or 
nothing. And it would be difficult to find a better illustration of 
this  secret  in  nature  or  philosophy;  hence  I  have  set  on  the 
medallion  design  IMAGO  CREATONIS  [in  the  image  of 
creation].

It is no less remarkable that there appears therefrom, not only 
that God made everything from nothing, but also that everything 
that He made was good; as we can see here, with out own eyes, 
in this image of creation. Because instead of there appearing no 
particular order or pattern, as in the common representation of 
numbers, there appears here in contrast a wonderful order and 
harmony which cannot be improved upon. Inasmuch as the rule 
of alternation provides for continuation,  so that  one can write 
without computation or the aid of
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FIGURE 1. Two  Versions  of  Leibniz’s  Design  of  the  Binary 
Medallion.  They  are  facsimiles  of  the  ones  appearing  on  the 
respective title pages of Johann Bernard Wiedeburg’s Dissertatio 
mathematica de praestantia arithmeticae binaria prae decimali 
(Jena:  Krebs,  1718)  and  Rudolf  August  Nolte’s  Leibniz 
Mathematischer Beweis der Erschaffung und Ordnung der Welt  
in einem Medallion an den Herrn Rudolf August (Leipzig: J. C. 
Langenheim, 1734.
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memory as far  as  one  wishes,  if  one alternates  the  last  place 
0,1,0,1,0,1, etc., putting these under each other; and then putting 
under  each  other  in  the  second  place  (from  the  right) 
0,0,1,1,0,0,1,1, etc.; in the third 0,0,0,0; 1,1,1,1; 0,0,0,0; 1,1,1,1; 
etc; in the fourth 0,0,0,0,0,0,0,0; 1,1,1,1,1,1,1,1; 0,0,0,0,0,0,0,0; 
1,1,1,1,1,1,1,1;  and  so  forth,  the  period  or  cycle  of  change 
becomes again as  large for each new place.  Such harmonious 
order and beauty can be seen in the small table on the medallion 
up to 16 or 17; since for a larger table, say to 32, there is not 
enough room. One can further see that the disorder, which one 
imagines in the work of God, is but apparent; that if one looks at 
the matter with the proper perspective, there appears symmetry, 
which  encourages  one  more  and  more  to  love  and  praise  the 
wisdom, goodness, and beauty of the highest good, from which 
all  goodness  and  beauty  has  flown.  I  am  corresponding  with 
Jesuit  Father  Grimaldi,  who  is  currently  in  China  and  also 
president  of  the  Mathematics  Tribunal  there,  with  whom  I 
became acquainted in Rome, and who wrote me during his return 
trip  to  China  from  Goa.  I  have  found  it  appropriate  to 
communicate to him these number representations in the hope, 
since he had told me himself that  the monarch of this mighty 
empire  was  a  lover  of  the  art  of  arithmetic  and  that  he  had 
learned  to  figure  the  European  way  from  Father  Verbiest, 
Grimaldi’s predecessor, that it might be this image of the secret 
of creation which might serve to show him more and more the 
excellence of the Christian faith.

So that I may explain the rest of the medallion I marked the 
main places, namely 10 or 2, 100 or 4, 1000 or 8, 10000 or 16, 
with * or an asterisk, because if one takes note of these, one is 
bound to see the origin of the remaining numbers. For example, 
why 1101 stands before 13 is shown by this demonstration:

1 1
00 0

100 4
1000 8
1101 13

and so it is with all other numbers. I have also given an example 
of  addition and one of  multiplication on the  medallion at  the 
sides  of  the  table  so  that  one  could  note  from  them  the 
foundation of operations and how the arithmetic rules apply here
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FIGURE 2. Facsimile of Title Page of Rudolf Nolte’s 1734 booklet, 
in which Leibniz’s 1697 letter to the Duke appears as well as the 
1703 “Explication.”



too.  However,  the  intention  is  not  to  use  this  manner  of 
reckoning in other than the study of and search for the secrets of 
numbers, and not at all for use in every-day life. 

The next two paragraphs of the letter are devoted to a detailed 
description  of  the  remaining  features  of  the  medallion  design. 
Each of the two versions of Figure 1 is somewhat at variance with 
this description—Nolte’s being the closer. The letter continues:

A number written in this way will not be more than 4 times as 
long as in the conventional way. In it can be found, I think, so 
many  wonderful  and  useful  observations  for  the  increase  of 
scientific knowledge that the Mathematics Society of Hamburg 
[Hamburgische  Rechnungsgesellschaft],  whose  industry  and 
determination is praise-worthy, if some members thereof would 
wish to turn their thoughts and desires on it, would, I am certain, 
find such things, which would bring not inconsiderable renown 
to it [the Society] and to the German nation, because the matter 
was  first  brought  to  light  in  Germany.  From this  manner  of 
writing numbers I see wonderful advantages accruing, which will 
subsequently also benefit common arithmetic. 

Lest the idea of commemorating that wonderful binary system be 
insufficient motivation for having the medallion struck, Leibniz 
suggested  that  the  other  side  be  devoted  in  some  manner  to 
showing a bust of Rudolph August, the Duke of Brunswick.

This  1697  letter  to  the  Duke  was  published  by  Heinrich 
Kohlern in 1720 in a booklet that also contained a Leibniz paper 
on Monadology. Kohlern seems to have appended the letter even 
though he had failed to see in it any “proof of the application of 
the binary system to the Creation.”1

Rudolf Nolte had been much more impressed; he included the 
same letter (with minor deletions) in his 1734 booklet containing 
the  “Explication” and also bearing  a  title  page  (Figure  2)  that 
boldly announced Leibniz’s mathematical proof of the Creation.2

The binary medallion apparently was never struck.3 Numerous
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etc.

FIGURE 3. Table  from Leibniz’s May 17,  1698 letter  to  Johann 
Christian Schulenburg.
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writers have based a contrary assumption, in the last analysis, 
upon having seen some version of its design. The Duke was 
already 70 years old when he received the medallion proposal in 
1697.

TWO LETTERS TO JOHANN CHRISTIAN SCHULENBURG (1698)

These letters were written by Leibniz on March 29 and May 
17,  1698.4 The first  included merely  an  introduction  to  binary 
notation,  but  the  second  included  the  table  of  multiples  of  3 
shown in Figure 3 Focusing on the binary strings of this table, 
Leibniz made the following observations:

(1) The digit column at the right end of the binary strings is 
01010101..., i.e., it involves the period 01.

(2) Each column (numbered from the right toward the left) has 
its own characteristic period:

1st column: 01
2nd column: 0110
3rd column: 00101101
4th column: 0001110011100011
5th column: 00000011111000001111110000011111
etc.

(3) The period of the nth column is 2n digits long.

(4) If the second half of each period is written under the first 
half, it becomes apparent that they differ only in having 1 replace 
0 and vice versa:

3rd column: 0010
1101

4th column: 00011100
11100011

5th column: 0000001111100000
1111110000011111
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FIGURE 4. Table of Numbers from Leibniz’s “Explication.”
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CORRESPONDENCE WITH JOHANN (JEAN) BERNOULLI (1701)

An exchange of several letters in the period from April 5 to 
May 7, 1701 was devoted, in part, to the binary system.5 Initially 
Leibniz offered an explanation not unlike that in his letter to the 
Duke. Indeed, nothing beyond the mathematical content of that 
letter to the Duke developed, except possibly Bernoulli’s explicit 
recognition that the binary place values 1, 2, 4, 8 ... are in fact 
powers of 2 and that, for example,

1701 = 210 + 29 + 27 + 25 + 22 + 1 = 11010100101.

“EXPLICATION” (1703)

“Explication de  l’arithmétique  binaire”  by Leibniz  appeared in 
the  1703  volume  of  the  Memoires  de  l’Academie  Royale  des  
Sciences on pages 85–89. This explanation of binary arithmetic 
was the first  publication on this  topic to result  in a significant 
impact on the scientific community.

Leibniz,  now  57,  had  been  a  frequent  contributor  to  the 
Memoires of this Parisian academy. The Berlin academy was not 
to begin its publications until 1710. The article begins: 

The ordinary reckoning of arithmetic is done by tens.  One 
draws on ten characters, which are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
which signify zero, one and its successors up to nine inclusive. 
Upon coming to ten, one begins over again, expressing ten by 
10,  ten  times  ten  or  hundred  by  100,  ten  times  hundred  or 
thousand by 1000, ten times thousand by 10000, and so on.

But instead of this progression by tens, I have for many years 
used the most simple of all, which goes by twos, having found 
that it is conducive to the perfecting of the science of numbers. 
Thus  I  have used  no other  characters  but  0  and 1,  and upon 
coming to two, I begin again. This is why two is expressed here 
by 10, and two times two or four by 100, two times four or eight 
by 1000, two times eight or sixteen by 10000, and so on.

Here is the Table [Figure 3.4] of Numbers in this fashion, 
which one could extend as far as one would wish. Here, one sees 
at a single glance the reason for a celebrated property of
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FIGURE 5. Examples of Arithmetic Operations Shown in Leibniz’s 
“Explication.”
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the geometric progression by twos in whole numbers, that which 
permits  the  fact  that  if  one  has  only  these  numbers  of  each 
degree, one can compose all the other whole numbers less than 
double the highest degree. [Compare Hariot, Theorem 2.2] Here, 
this is as if one said, for example, that 111 or 7 is the sum of 
four, of two, and one—and that 1101 or 13 is the sum of eight, 
four,  and one. This property permits  the Assayer to weigh all 
sorts of masses with few weights and could serve in coinage to 
give more value with fewer pieces.

These expressions of numbers being established would very 
much  facilitate  all  sorts  of  operations.  [Figure  3.5]  All  these 
operations are so easy that one would never need to try or guess, 
as is needed in ordinary arithmetic. One would no longer have to 
memorize  as  one  must  for  ordinary  reckoning,  where  it  is 
necessary  to  know,  for  example,  that  6  and 7 added  together 
make 13 and that 5 multiplied by 3 gives 15 in accordance with 
the multiplication table. But here all this finds itself and proves 
itself at the start, as one sees in the examples preceded by signs * 
and **.

Nevertheless  I  do  not  at  all  recommend  this  manner  of 
counting  to  replace  the  ordinary  by  ten.  Aside  from  being 
accustomed to this and not needing to learn what one has already 
memorized, one finds the common counting by ten quicker and 
the  numbers  not  as  long.  If  one  were  to  count  by  dozens  or 
sixteens  one  would  have  even  more  of  an  advantage  in  this 
respect.  But reckoning by twos,  that  is  to say by 0 and 1,  in 
recompense for its length, is more fundamental to science and 
gives new discoveries, which result in subsequent utility—even 
to the common way of numbering and above all for geometry. 
The reason is that the numbers, being reduced to their simplest 
principle, like 0 and 1, seem all around in the best possible order. 
For example, in the same Table of Numbers [Figure 3.4J, one 
sees  each  column ruled  by  periods  which  always  begin  over 
again. In the first column this is 01, in the second 0011, in the 
third  00001111,  in  the  fourth  0000000011111111,  and  so  on. 
Little zeros have been put into the table to bring out better these 
periods. Also, lines have been put into the table, which confine 
such periods within them. It happens again that square numbers, 
cubes, and other powers, also triangular numbers, pyramid, and 
other figure numbers, have similar periods, of a sort that one can 
write the tables without calculation. One bit
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of  tediousness  in  the  beginning,  which  afterwards  gives  the 
means for economizing the calculation and going on to infinity 
by rule, is infinitely advantageous.

What is astounding in this reckoning is that this arithmetic by 
0 and 1 happens to contain the secret of the lines of an ancient 
king and philosopher named Fohy, who is believed to have lived 
more than 4000 years ago, and whom the Chinese regard as the 
founder  of  their  empire  and  their  sciences.  There  are  several 
linear figures which are attributed to him. They all come back to 
this arithmetic, but it  suffices to show here the Figures of the 
Eight Cova, as they are called, which pass as fundamental, and to 
adjoin to them the explanation, which is manifest provided that 
one notices firstly that a whole line —— means unity or 1 and 
secondly, that a broken line –   – means zero or 0.

The Chinese lost the significance of these Cova or Lineations 
of Fohy, perhaps more than 1000 years ago.  They have made 
commentaries on that, in which they have gathered I know not 
what far out meanings. They are of a sort that it is necessary that 
their true explanation now come to Europeans.

It  is  hardly  more  than  two  years  ago  that  I  sent  to  R.  P. 
Bouvet,  the celebrated French Jesuit,  who died in Peking, my 
method of counting by 0 and 1. He needed nothing further to 
make the  observation that  this  was  the  key  to  the  Figures  of 
Fohy. When thus he wrote me on November 14, 1701, he sent 
me this princely philosopher’s Grand Figure, which goes to 64 
lineations and leaves no room for doubt about the truth of our 
interpretation, which is such that one could say that this Father 
has deciphered the Enigma of Fohy with the aid of that which I 
had communicated to him. Since these Figures are perhaps the 
most ancient monument of science which exists on this earth,
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this restitution of their meaning, after so long an interval of time, 
would seem most curious.

The agreement between the Figures of Fohy and my Table of 
Numbers is seen better if  the initial zeros are supplied, which 
may  seem  superfluous,  but  which  serves  better  to  mark  the 
periods of the columns, as I have supplied them in effect with 
little circles, to distinguish them from the necessary zeros. This 
accord  gives  me  a  high  opinion  of  the  profundity  of  the 
meditations of Fohy, because that which seems easy to us now 
was  not  so in  those  far-removed times.  The binary  or  dyadic 
arithmetic is, in effect, very easy today with little thought going 
into it,  because our  manner  of  counting is  conducive  to  it;  it 
seems that one cuts off only the excess of it. But this ordinary 
arithmetic by tens does not seem very ancient, at least the Greeks 
and the Romans had ignored it, and have been deprived of its 
advantages.  It  seems that  Europe owes  its  introduction at  the 
time of Pope Sylvester II, to Gerbert, who had seen it with the 
Moors of Spain.

Now, as one believes in China, that Fohy is also the author of 
ordinary  Chinese  characters,  which  were  severely  altered  in 
subsequent times, his essay on arithmetic calls for this judgment: 
it  might  well  be possible  to uncover again some considerable 
things by way of the rapport between the numbers and the ideas, 
if  one  could  unearth  the  foundations  of  this  Chinese  writing, 
which, much more than is believed in China, has consideration 
of numbers established in itself. R. P. Bouvet has strongly urged 
to  push  this  point  and  to  expect  good  results  of  this  kind. 
However, I do not know if there was ever an advantage in this 
Chinese  writing  approaching  that  which  ought  to  exist 
necessarily in the feature that I project. It  is that all  reasoning 
which  one  can  pull  from  ideas  might  be  pulled  from  their 
characters by a manner of reckoning, which would seem one of 
the most important aids to the human intellect.

Leibniz’s  “Explication”  has  hereby  been  given  in  full  as 
translated from the French.

“NOUVELLE ARITHMETIQUE” BY FONTENELLE (1703) 

Bernard  Le  Bovier  de  Fontenelle  published  “Nouvelle 
Arithmetique” in the 1703 issue of Histoire de l’Academie
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Royale des Sciences, pages 58–63. At the time, he was secretary 
of  that  Parisian  academy.  His  unsigned  article  constituted  an 
editorial  comment on the  “Explication” of Leibniz.  They were 
contained  in  the  same  volume,  for  the  Memoires,  though 
separately paginated, were bound together with the Histoire.

Fontenelle pointed out that  ten need not  be the base of our 
arithmetic,  and  that  indeed  certain  other  bases  would  have 
advantages over it. Base 12, for example, would simplify dealings 
with  certain  fractions  such  as  1/3 and  1/4.  He also  noted  that 
numbers have two sorts  of  properties,  essential ones and those 
dependent on the manner of expressing them. As an example of 
the former he cited the property that the sum of the first n odd 
numbers equals n2, and of the latter that a number divisible by 9 
has a digit  sum also divisible by 9. This same property would 
hold for 11 in the case of base 12. He reported that Leibniz had 
worked with the simplest  of all  possible bases,  base two.  This 
base  was  not  recommended  for  common  use  because  of  the 
excessive  length  of  its  number  representations,  but  Leibniz 
considered  it  particularly  suitable  for  difficult  research  and  as 
possessing advantages absent from other bases.

Fontenelle  reported  further  that  Leibniz  had  communicated 
this binary arithmetic in 1702, but had asked that no mention of it 
be made in the Histoire until he could supply an application. This 
application eventually came forth in the binary interpretation of 
the Figures of Fohy. The rest of Fontenelle’s article is devoted to 
reporting that binary arithmetic was invented not only by Leibniz, 
but also by Professor Lagny at about the same time.

TOMAS FANTET DE LAGNY (1660–1734)

Lagny was admitted to the Paris academy in 1695, contributed 
frequently  to  its  Memoires, and  published  several  books  on 
scientific subjects. Numerous later references (some garbled) to 
Lagny’s  work  on  the  binary  system  are,  in  the  last  analysis, 
traceable to the following passage from “Nouvelle Arithmetique” 
by Fontenelle:
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If  Mr.  Leibniz  did  not  discover  binary  arithmetic 
simultaneously with the Emperor Fohy,  at  least  Mr.  de Lagni 
discovered  it  simultaneously  with  Mr.  Leibniz.  Mr.  Lagni, 
Professor  of  Hydrography  at  Rochefort,  works,  as  one  has 
already been able to see in the 1702  Histoire, at perfecting the 
science  which  he  professes.  For  navigational  use,  he  has 
developed a new trigonometry, and while investigating the entire 
system of logarithms, which had been invented principally for 
trigonometry,  he  had  seen  in  it  defects  and  inconveniences, 
which  he  had  been  able  to  remedy  only  by  devising  binary 
arithmetic.  The  great  inconvenience  of  logarithms  is  the 
changing  of  multiplication  and  division,  which  are  long  and 
difficult  operations  for  large  numbers,  into  addition  or 
subtraction,  which  are  much  simpler  and  easier.  But  Mr.  de 
Lagni claims that this advantage, which the theory promises to 
fulfill so magnificently, is reduced to nothing in practice. On the 
contrary, these logarithms, which are sort of sham or artificial 
numbers,  are  only a  detour  on the  way to  arriving at  natural 
numbers—the only ones being looked for. He calls to witness all 
those who have calculated by this method that additional work is 
involved, done more easily, perhaps, but requiring a longer time. 
He even maintains that  these logarithms give false  results  for 
large numbers, and he cites as proof for this a computation that 
Henry Briggs had given as an example of the use of logarithms 
in his Arithmetique Logarithmique beginning on page 27.

In  binary  arithmetic,  multiplications  and  divisions  develop 
necessarily  through  simple  additions  and  subtractions—no 
detour being necessary, such as the one through logarithms in 
common arithmetic—and accordingly all  the advantage, which 
common arithmetic fails to get out of the use of logarithms, is 
inherent  in  binary  arithmetic,  whose  multiplications  and 
divisions Mr. Lagni for this reason calls natural logarithms. He 
has given his idea at length in his paper, which he presented this 
year at Rochefort and which he sent to the Academy. The little 
we have said about it, should suffice for the eyes of those who 
would wish to go deeper into this new arithmetic.

As  even  the  greatest  of  mathematicians  could  very 
legitimately be desirous of the glory of a simultaneous discovery 
with Mr. Leibniz (without having been in his following), we feel 
obliged to testify here on behalf of Mr. Lagni, that, having
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always been at Rochefort, he would not seem to have had any 
knowledge of that which Mr. Leibniz had sent to the Academy 
on binary arithmetic.

Calling  a  number  natural and  its  logarithm  artificial was 
common at this time (Caramuel had done so, for example). Quite 
unusual, however, was the use of “natural logarithms” to mean “a 
natural aid  to  computation,”  i.e.,  “an  aid  to  computation  that 
avoids logarithms.”

CORRESPONDENCE WITH JACQUES BERNOULLI (1704–5)

Jacques  or  Jacob  was  the  older  brother  of  Jean,  whose 
correspondence with Leibniz was mentioned earlier. During the 
last  year  of  his  life,  Jacques  exchanged  several  letters  with 
Leibniz that were, in part, devoted to the binary system.6 After 
Leibniz raised the topic of columnar periods in the binary strings 
of the integers 1, 2, 3 ..., Bernoulli showed the following table of 
squares: 

0 0
1 1

100 4
1001 9

10000 16
11001 25

100100 36
110001 49

1000000 64
1010001 81
1100100 100
1111001 121

10010000 144
10101001 169
11000100 196
11100001 225

100000000 256
etc.     etc.
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He pointed out that the first column has a period of 01, the 
second  is  all  zeros,  and  the  third  has  a  period  of  1000.  To 
Bernoulli’s  comment  that  the  fourth  column  had  no  obvious 
period,  Leibniz  supplied  10100000  for  the  fourth  and 
1101010110000000 for the fifth.

Bernoulli communicated the following string of binary digits

11 1100 1000 0001 0011 1111 0110 0110 0011 0110 1101 
1001 1000 0100 1111 0010 0101 1001 0101 1011 0110 1010 
0011 0111 0010 1010 0000 0011 1101 0000

as the supposed binary equivalent of

a = 3.14159 26535 89793 23846 26433 83279 50288,

where  a is the 36-decimal digit approximation to the number  π. 
Since

3 1
8
 a  3 1

4

which in binary notation reads

11.001 < a < 11.010

it  becomes obvious that  Bernoulli  made an error  more serious 
than leaving out the fraction marker.  In fact,  his 118-bit  string 
seems to be the binary equivalent of the integer (1035a). Bernoulli 
also offered

42161 26122 23212 12122 24124 21211 22111 12121 21111 
32132 11111 74114

as a description or abbreviation of that 118-bit string, where the 
“4” indicates  4  ones,  the  “2” indicates  2  zeros,  then 1 one,  6 
zeros, and so on.

MAHNKE’S REPORT ON LEIBNIZ MANUSCRIPTS

The following account is based entirely on a report by Dietrich 
Mahnke, who had examined unpublished Leibniz manuscripts.7
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On September 12, 1680, Leibniz wrote the first known proof 
of

Theorem 3.1: When p is a prime and β is not a multiple of p, 
then

βp-1 = 1 (mod p).

This  is  known  as  Pierre  de  Fermat’s  (1601–1665)  theorem. 
Fermat is best known for his “Last Theorem,” which has not been 
proven to  this  day.  Leibniz  had  been  dealing  with  binary  and 
decimal fractions since 1677. He knew for example that 1/3 has 
the following binary representation

1/11 = 0.010101...

with a 2-digit binary period and that 1/10 would have a 4-digit 
period, since the rising powers of 2 always leave the remainders 
2, 4, 8, 6, in periodic order upon division by 10, and must repeat 
when  all  four  of  them have  occurred.  Obviously,  at  most  n-1 
different  remainders  can  occur  upon  division  by  n,  hence,  a 
period in any base β can have at most n-1 digits. In unit fractions 
of  the  type  1/n,  Leibniz  viewed  the  dividend  1  as  the  first 
remainder  and  concluded  that  the  second  period  begins  when 
another remainder of 1 appears, at least when n is relatively prime 
to the base β.

At least one contemporary of Leibniz, John Wallis, knew that 
the lengths of the periods of the decimal equivalents of 1/n are at 
most n-1 and that they are frequently proper divisors of n-1. But 
Leibniz knew more precisely that the lengths are always divisors 
of n-1 when n is prime. He was also aware of a close connection 
with Fermat’s theorem (3.1), a connection not to be rediscovered 
until Johann Heinrich Lambert did so in 1758.

The work of Leibniz seemed to be part of an effort to discover 
a prime number formula and a proof of the irrationality of the 
number π. He seemed to temporarily have succeeded in the latter 
when he argued that his formula

π/4 = 1 – 1/3 + 1/5 – 1/7 + ...

(known to him since 1674) indicated that π was irrational,
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since the decimal equivalents of the fractions would involve ever 
longer periods, hence, their sum,  π/4, had to have an infinitely 
long period and be irrational. However, since the sum of infinitely 
many  decimal  fractions  of  ever  longer  periods  may  well  be 
rational, the argument is invalid. For example

1 + 1/3 + 1/9 + 1/27 + ... = 3/2

A valid proof of the irrationality of  π, according to Mahnke, did 
not come until Lambert provided one in 1766.

SOME REACTIONS TO LEIBNIZ’S BINARY INTERPRETATION OF THE 
FIGURES OF FOHY

The Figures  of  Fohy appear  in  the  ancient  Chinese  book  I  
Ching or Book of Changes. F. van der Blij has characterized this 
work as “a highly corrupt jumble of divination texts reminiscent 
of the oracle-bone documents of the second millennium B.C.”8

James  Norwood,  on  the  other  hand,  described  it  as  “a 
compilation of ancient wisdom that stretches back into prehistory, 
contains  commentaries  on sixty-four  hexagrams the  Figures  of 
Fohy, any one of which its user may obtain by casting yarrow 
stalks (the traditional form) or tossing coins (the modern form)—
moments of fate snatched from the ongoing river of change. The 
book is used not simply for fortunetelling but is, rather, oracular 
in the sense that it intends to convey wisdom.”9

After Leibniz published his binary interpretation of the Figures 
of Fohy in the 1703 “Explication,” no one was more delighted 
than Wilhelm Ernst Tentzeln, the editor of  Curieuse Bibliothec, 
who published more details of this interpretation, based upon a 
private  communication  from  Leibniz.10 Tentzeln  clearly 
considered it most curious that the supposedly intelligent Chinese 
had lost and then had failed to rediscover the meaning of these 
Figures, so that it took a European genius to do the job for them.
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FIGURE 6. Facsimile of Page 228 of Carus’s 1896 Article in  The 
Monist.



Moritz Cantor declared Leibniz’s interpretation mistaken and 
berated himself for having at first accepted it.11 P. Carus, however 
observed that: 

Cantor seems to overlook that in this very respect the ancient 
Yang  and  Yin  philosophy  of  the  Chinese  closely  resembles 
Leibniz’s idea, whether we regard the Kwa Figures of Fohy as 
numbers, or as a binary system of such symbols as are still more 
general and indefinite. The fact of both their presence and their 
philosophical  significance  remains  the  same  and  cannot  be 
doubted.12

In further support of this point, Carus displayed a table of 6-bit 
strings and compared it with a Chinese diagram (Figure 3.6). 

Raymond  Clark  Archibald  called  Leibniz’s  interpretation 
“worthless”  and  cited  P.  L.  F.  Philastre’s  monumental  two 
volumes as the basis of his judgment. Philastre had been the first 
to translate I Ching into French. H. Brocard decided that even the 
oriental commentators had great difficulty with the nuances of the 
Chinese language in that ancient document; the task was, in his 
opinion, beyond any European.13

Nevertheless,  combinatorial  aspects  susceptible  to  binary 
interpretations  do  exist  in  the  Figures  of  Fohy.  Blij,  of  the 
Mathematical  Institute  at  Utrecht in  the  Netherlands,  discusses 
these quite thoroughly in the 1967 article already cited.
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· IV ·
THE REST OF THE 1700S

SOME EARLY SCHOLARLY SEQUELS TO LEIBNIZ’S

1703 “EXPLICATION”

Serious reactions to the binary interpretation of the Figures of 
Fohy did not begin until 1863 with Cantor’s (cited in previous 
chapter). This delay is not surprising; Europeans knew little about 
China during the 1700s and had to await significant advances in 
Sinology.

Only three early scholarly sequels to Leibniz’s dyadics per se 
have  been  found.  These  are  surprisingly  few  for  a  topic 
introduced with such enthusiasm by so prominent a man in the 
most prestigious scientific journal of its time, the Memoires of the 
Parisian Academy of  Science.  Moreover,  none  of  the  three 
appeared in  these  Memoires, where  the  carefully  prepared and 
cross-referenced indices list nothing further on this topic at least 
through 1790.

The  first  of  the  three  sequels,  and  the  only  one  to  appear 
before Leibniz’s death in 1716, was an article by Petr Dangicourt 
published  in  1710  in  the  first  volume  of  Miscellanea 
Berolinensia.1 This journal was published by the Berlin Academy 
of Science, which Leibniz had been instrumental in founding. The 
Latin  title  of  the  article  is  “De  periodis  cotumnarum in  serie  
numerorum  progressionis  Arithmeticae  Dyadice  expressorum” 
and indicates that it deals with the analysis of columnar periods. 

Unlike Leibniz, who had avoided the use of exponents in his 
“Explication,”  Dangicourt  introduced  binary  notation  by 
explaining that fedcba is to mean

f·25+ e·24 + d·23+ c·22 + b·21 + a·20,
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where each letter  represents either  0 or 1.  To help explain the 
“carrying” in the operation of addition, he reminded his readers 
that

2n + 2n = 1·2n+1.

Dangicourt pointed out that if a column (in a vertical list of 
binary strings) has a period of length of 4, and if one marks every 
3rd digit in that column, then the 12th digit will be a ‘marked’ 
digit, and also an ‘end’ digit of the columnar period. He saw that 
this involved the least common multiple of 3 and 4 being 12, and 
felt obliged to refer his readers to proposition 36 of the 7th book 
of  Euclid,  where  a  procedure  is  given  for  finding  the  least 
common  multiple  of  two  or  more  numbers.  He  found  other 
excuses to refer to Euclid, but none to refer to Leibniz.

Dangicourt showed the following table of multiples of 8:

0000000 0
0001000 8
0010000 16
0011000 24
0100000 32
0101000 40
0110000 48
0111000 56
1000000 64
1001000 72
1010000 80
1011000 88
1100000 96
1101000 104
1110000 112
1111000 120

whose first  three  columns from the right  are all  zero.  Nothing 
more startling than this appears in Dangicourt’s 30-page article.
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The second of the three sequels, Johan Bernard Wiedeburg’s 
(1687-1766) postdoctoral thesis of 1718, has already been cited 
(p. 32) in reference to the binary medallion design. A facsimile of 
the full title page of this thesis appears in Figure 7.

Wiedeburg  carefully  reviewed  Leibniz’s  “Explication,” 
Fontenelle’s  “Nouvelle  Arithmetique,”  and  Dangicourt’s  “De 
periodis  .  .  .”.  He  seems  to  have  been  the  first  to  publish  a 
misreading of Fontenelle’s account of Thomas Fantet de Lagny’s 
work with dyadics. He reported falsely that Lagny had worked 
with logarithms expressed in binary notation, when in fact Lagny 
had avoided logarithms by a direct use of dyadics. It is possible 
that  all  subsequent,  similarly  false  reports  are  based  on 
Wiedeburg’s misreading. But this is not probable, since his thesis 
has  been  less  readily  available  than  the  Histoire, where 
Fontenelle’s passage seemed to invite misreading by the rather 
unusual  use  of  “natural  logarithm”  to  mean  “an  aid  to 
computation that avoids logarithms.”

Wiedeburg followed up Leibniz’s suggestion that dyadics can 
be used as the key to a minimum set of weights, these being the 
same as the binary place values. He showed in some detail how 
convenient such a system of weights would be, especially if the 
system of numeration were also a binary one. While he seemed 
enthusiastic about this in 1718, his 1725 book, which was a 1162-
page introduction to mathematics, devoted no more than a few 
lines on page 11 to mentioning bases 2 and 4 as the inventions of 
Leibniz and Weigel respectively. Bishop Caramuel’s 1670 work 
was still going unnoticed.

The third of the sequels is again a thesis.  It  was written by 
Johann Friedrich Weidler  and appeared in  1719 in  Wittenberg 
under the Latin title of  Dissertatio mathematica de praestantia  
arithmeticae  decadicae,  quatetractycam  et  dgadicam. Weidler 
also  carefully  reviewed  the  work  of  Weigel,  Leibniz,  and 
Dangicourt on this topic, although he was apparently unaware of 
Wiedeburg’s.  He  showed more  extensive  tables  of  equivalents 
and additional  examples  of  the  four  fundamental  operations  in 
base 2 and base 4.
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FIGURE 7. Facsimile of the Title Page of the 1718 Postdoctoral 
Thesis Written by Johann Bernard Wiedeburg of Jena.



CHARLES XII AND HIS SCIENCE ADVISOR SWEDENBORG

In his biography of Charles XII, of Sweden, Voltaire wrote:

Some people have wanted to pass off this prince as a good 
mathematician; undoubtedly he had a deeply penetrating mind; 
but the proof usually given of his mathematical knowledge is not 
very conclusive; he would change the manner of counting by ten, 
and  he  would  propose  sixty-four  in  its  place,  because  this 
number contained at once a cube as well as a square, and when 
divided by two, it would in the end reduce to unity. This idea 
could prove only that he loved the extraordinary and the difficult.

This passage appears on pages 342–343 of the 1823 edition, but is 
absent  from the  earlier  Basel  edition  of  1781.  Voltaire’s  own 
footnote to this passage stated: 

It proved also that he had penetrated, up to a certain point, the 
theory of numbers, until he knew the nature and the properties of 
these arithmetic scales.

A letter that Swedenborg (known as Swedberg before being 
raised  to  the  nobility)  had  written  to  Goran  Nordberg  gives 
further details:

Moreover,  in  the  number  10,  there  is  no  cube,  square,  or 
biquadrate,  the  result  being  that  with  that  number,  great 
difficulties are met with in cubic and square reckonings. But if, 
in its place, we had made use of 8 or 16, then one would have 
had much greater advantage, and it would have carried with it 
greater ease, in that 8 is a cube of 2, and 16 a square of 4; so that 
it is at once accompanied by a cubic or square root. Moreover, 
by halving, this same number could be reduced to its principium 
or terminum primum, namely 1, without the intervention of any 
fraction; thus, 16, 8, 4, 2, 1. This same number could also be 
better fitted, and could better adapt itself, to the divisions in our 
coinage  and  measures,  whereby  many  obscure  and  broken 
figures would be avoided.

This, that is now brought forward in detail, was firmly held to 
by  the  King,  and  he  desired  that  a  trial  be  instituted  with  a 
number other than 10. And when, at this, it was said that such a 
trial could not be made unless new numbers and new names
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should be invented and used, which must be wholly unlike those 
in common use, since were the least likeness retained it would at 
once  result  in  bewilderment  and  confusion,  this  likewise  was 
included in the trial.

By command the experiment was made with 8,  which is a 
cube of 2, and which by halving stops exactly at its first number. 
And to this end new figures were invented and for each figure a 
new name. With these, the sequences were made according to 
the usual method, and it was applied to coins and measures and 
also  to  the  cubic  reckoning.  When this  trial  was  humbly  laid 
before his Majesty, he did indeed think that all was satisfactory; 
yet  it  was  seen that  the  Master  wished  rather  a  reckoning of 
greater  extent  and  difficulty,  wherewith  he  could  have  the 
opportunity  the  better  to  show  his  power  and  acumen  of 
judgment and his deeper thought. To this end he raised the point 
as to whether there was not a number which contains within it 
both a cube and a square, and which likewise by halving could 
be  brought  to  1  without  fractions.  The  number  64  was  then 
suggested which is a square of 8 and a cube of 4, and which 
likewise could be halved to 1. We did not neglect, however, to 
point out that such a number would be too high, difficult, and 
almost impossible to work with. For if the turn should be first 
made  at  64,  and  all  prior  thereto  proceed  in  single  numbers 
[digits], and from there a beginning be made with two numbers 
and when it has again come to the turning point 64, that is, has 
come to 64 times 64, being 4096, then to use three numbers; then 
in all reckoning with this system, and especially in multiplication 
and division, one would meet the difficulty of being obliged to 
hold  in  memory,  a  multiplication  table  consisting  of  4096 
numbers, instead of the one now in use, which consists of 80 to 
90.

But the greater the difficulties occasioned therewith, the more 
brightly  glowed the  desire  to  make the  trial  and to  show the 
possibility  of  a  thing  which  we  represented  as  requiring  too 
much reflection to be brought  into order  and completion in  a 
hurry.  His Majesty then took it  upon himself to work out and 
plan this method of counting. The next day he sent us his project, 
worked out on a whole sheet, with new numbers [digits] and new 
names.  There  he  divided  the  aforesaid  64  figures  into  eight 
classes, and distinguished each class from the other by certain 
signs. On closer examination, these distinguishing signs
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were all found to be the initial and final letters and signs of the 
names  that  he  used  therein,  but  all  in  so  pleasing  and 
comprehensive a way that,  after knowing the first  8 numbers, 
one had no difficulty in learning the rest of the sequence to 64. 
By the side of each and every number were set new names, and, 
on the 8 numbers in the first class, names such as could at once 
be remembered, while the remaining numbers were marked with 
a differentiation such that, without the difficulty of burdening the 
memory, one could easily recite all the numbers in order, and the 
counting could be done according to rule. And when one had 
reached 64,  and would continue to 64 times 64 or 4096, with 
three figures, then followed, by means of the abovementioned 
differentiations, new names, in such order, one after the other, all 
with a natural and self-demonstrating variation, that one had new 
and fitting names for numbers as high as could be desired, so 
that there could be no number so high as not always to carry with 
it  a  change  in  name,  according  to  the  principle  and  rule 
formulated.  As  already  stated,  this  same  project  which  his 
Majesty set up with his own hand, and which I still have in my 
possession in the original was sent to me that, with its guidance, 
I might form a table which would show the difference, in respect 
both to names and to numbers, between this and ordinary method 
of counting.

On  this  same  project  it  was  also  shown  how  both 
multiplication  and  division  should  be  done,  the  intention 
therewith being to meet the great difficulties.

When by such  high  command,  the  said  project  was  to  be 
further expanded, and the opportunity was given me for closer 
reflection as to whether this reckoning could be set up in a better 
and more convenient way, then, however much I worked on it, I 
could yet  find nothing that  could be  improved on,  nor in  my 
humble opinion, could any other man have found anything, even 
though he used his time on mathematics alone.2

A footnote by translator Alfred Acton indicates that the written 
proposal from Charles XII is not available. The only knowledge 
comes from Swedenborg’s letter quoted above.

In his A New System of Reckoning, Swedenborg discusses only 
the base eight, or octal system and uses the eight digits

o l s n m t f v
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for  this  purpose.  It  is  noteworthy  both  that  he  gave  complete 
addition and multiplication tables for his octal system, and that he 
adopted Napier’s bones to it.

The  “Translator’s  Preface”  reveals  that  Swedenborg’s  own 
brother-in-law refused to publish this work on the grounds that it 
was too revolutionary and might result in a suspicion among the 
people of Sweden that it was the precursor of a coming change in 
coinage—with  which  they  had  already  had  bitter  experience. 
Other  print  shops  could  not  cope  with  the  special  demands 
involved,  so  Swedenborg  prepared  an  especially  beautiful 
manuscript  version  for  presentation  to  the  King.  Unfortunately 
Charles was hit  and killed by a cannon ball  on November 30, 
1718 before the presentation could take place. According to this 
translator,  Swedenborg  anonymously  published  a  little  tract  in 
November  1719  entitled,  A  Suggestion  for  so  dividing  our  
Coinage and Measures that Calculations can be facilitated, and  
all Fractions avoided. This work advocated the adoption of the 
decimal system in Swedish coinage, weights, and measures.

It is not clear whether either Swedenborg or his King was ever 
serious about introducing a nondecimal base for common use, but 
it is clear that among nondecimal bases the two men preferred a 
number that is a power of two, such as 8, 16, 32, or 64. Some 
writers came to believe that Charles XII favored base 12. Perhaps 
they had simply distrusted reports about a base so high as 64, or 
they had equated antidecimal with duodecimal. Levi Conant, for 
example, wrote:

So palpable are the advantages of 12 from this point of view 
that  some  writers  have  gone  so  far  as  to  advocate  the  entire 
abolition  of  the  decimal  system  and  the  substitution  of  a 
duodecimal system in its place. Charles XII, of Sweden, may be 
mentioned  as  an  especially  zealous  advocate  of  this  change, 
which he is said to have had in actual contemplation for his own 
dominions at the time of his death.3

Conant’s prominence has assured wide circulation of this error.
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EULER’S AND BEGUELIN’S USE OF DYADICS

Christian Goldbach, in a letter dated December 1, 1729, called 
Leonard Euler’s attention to the Fermat Conjecture:

Every number of the type Fn = 2k + 1 (where k = 2n) is a prime.

The first few of these Fermat numbers, namely 3, 5, 17, 257, 
and 65537 (for n = 0, 1, 2, 3, and 4) are indeed prime. Fermat 
admitted in a 1654 letter to Pascal that he had no proof of that 
conjecture.4 Even the next Fermat number (F5 = 4,294,967,297), 
not to speak of those following, is rather large and its primeness 
difficult to verify or disprove. Thus, in 1729, at the time of the 
Goldbach letter, still no proof or disproof of Fermat’s Conjecture 
was known.

In  binary  notation,  numbers  of  the  type  2q +  1  take  on  a 
particularly simple form, namely 1000...0001, i.e., a binary string 
that begins and ends in the digit 1 with all other digits 0, thus

F5 = 232 + 1 = 100000000000000000000000000000001

where the expression (232 + 1) itself may be interpreted as being 
in binary notation or the expanded form thereof.

According  to  Gustaf  Enestrom,  Euler  submitted  a 
counterexample  to  Fermat’s  Conjecture  to  the  Academy  at 
Petersburg on  September  26,  1732.5 Using  expanded  binary 
notation, Euler showed that when (1 + 27 + 29) is divided into (232 

+ 1) the result is the whole number

(1 + 27 + 28 + 210 + 211 + 212 + 213 + 217 + 218 + 221 + 222).

Like Dangicourt, Euler pointed to the identity

2n + 2n = 2n+1

as the key to the binary arithmetic involved.
N. Beguelin, apparently unaware of Euler’s work on this topic, 

gave  similar  results  in  1777,  using  his  own  abbreviation  for 
expanded binary notation.6 Beguelin described

(232 + 1) = (0.7.9)(0.7.8.10.11.12.13.17.18.21.22)
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where (0.7.9) stands for (20 + 27 + 29). Translated into decimal 
notation, this reads:

4,294,967,297 = (641)(6,700,417)

MISCELLANEOUS WRITERS OF THE MID 1700S.

In 1740 Christoph Friedrich Vellnagel treated bases 2, 3, 4, 5, 
6, 7, 8, 9, and 12, showing addition and multiplication for the first 
two of these in his 36-page booklet.7 It is noteworthy for showing 
arithmetic operations in base 3, but not otherwise.

In 1746 Francesco Brunetti  was the  first  to  publish serious 
work on binary fractions.8 His 55-page booklet devotes the first 
38 pages to whole numbers; he then introduced some fractions. 
An example of the latter is 191.45, whose binary  equivalent is 
10111111 1001

10100
, which simply involves the fraction 9/20 with 

numerator  and  denominator  in  binary  notation.  True  binary 
fractions  (those  whose  denominators  are  a  power  of  two)  are 
introduced on page 41 by showing:

Brunetti  pointed out  that  2/3 = 0.101010101010...,  but  in  a 
later dyadic computation he seemed satisfied to use 0.10101 for 
2/3,  i.e.,  he  substituted  21/32  for  2/3.  He  gave  examples  of 
multiplication and division involving dyadic fractions, of which 
the following is one:

l.011
1.1

1011  
1011    

10.0001
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In  effect  he  pointed  out  that  the  infinite  dyadic  fraction 
0.10101010... is the geometric series

1 / 2 + 1 / 8+ 1 / 32 + 1 / 128 + 1 / 512 + . . .

and that 1.01111111... stands for

1 + 1 / 4 + 1 / 8 + 1 / 16 + 1 / 64 + ... .

In  a  section  devoted  to  “Dyadic  Logarithms,”  Brunetti 
displayed:

1 0.0000000000000000000
10 1.0000000000000000000
11

100 10.0000000000000000000
101
110
111

1000 11.0000000000000000000

where  the  left  column contains  the  “natural  numbers”  and  the 
right  column their  logarithms to  the  base  2.  Every entry is  in 
dyadic  notation.  Aware  that  he  had  omitted  nonintegral 
logarithms, Brunetti somewhat gingerly discussed that if one had 
found  log(11),  for  example,  then  twice  that  would  give  the 
missing dyadic value for  log(110). He gave a table of decimal 
values  of  powers  of  two  up  to  240,  but  those  after  234 = 
17,179,869,184 are in error.

A year later, in 1747, Johann Berckenkamp’s 59-page booklet 
appeared.9 In addition to all bases below 10, Berckenkamp dealt 
rather superficially with bases 12, 13, 15, 24, and 30; he restricted 
himself  to  whole  numbers  and  avoided  nondecimal  arithmetic 
operations.  However  he  provided  such  “theorems”  as,  for 
example, his Theorem 57:

12213 = 5210
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He used 0, a, b, ..., x, y, and z (omitting j, o, and u) as the 24 
digits for base 24, where

a00 = 576

and where, according to his “Theorem 89,”

xyxv = 331,167.

He used the same 24 digits, augmented by α, β, γ, δ, ε, and ζ, 
for base 30, where

aα = 54.

Etienne Bezout10 explained, in substance, apparently as early 
as 1764, that for an arbitrary base β, having 0, 1, 2, ..., (β – 1) as 
its β digits, the string of digits bcdef represents

bβ4 + cβ3 + dβ2 + eβ + f

which, in the case of  β = 12, would mean that the string 57643 
represents 5·124 + 7·123 + 6·122 + 4·12 + 3. Moreover, Bezout 
gave, in substance, the following procedure for finding the base β 
representation of a number N:

If βp is the greatest power of β contained in N, then divide N 
by  this  βp and  note  the  quotient  a and  the  remainder  r. This 
number  r should  now be  divided  by  βp-1 calling  the  resulting 
quotient  b and the remainder  s. Continuing in the same manner 
until a remainder of k is obtained, such that k is zero or less than 
β, then abcd...k will be the base β representation of the number N.

To illustrate this, suppose the duodecimal equivalent of 12891 
is  to  be  found.  Divide  1728  (=123)  into  12891,  obtaining  a 
quotient of 7 and a remainder of 795. Now divide 795 by 144 
getting a quotient of 5 and a remainder of 75. Now divide 75 by 
12, obtaining a quotient of 6 and a remainder of 3. It now follows 
that 128910 = 756312.

Thus,  in  a  page and a  half,  Bezout  managed to  explain all 
bases  β at  once,  illustrating  his  general  principles  by  some 
examples for base 12. He thus accomplished more in his page-
and-a-half than Berckenkamp had in his entire 59 pages.

The eight pages that Georges Buffon devoted to nondecimal
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numeration are of similar high quality.11 He left no doubt of his 
preference for base 12 among all possible bases, mostly because 
base  12  numeration  would  dovetail  better  with  many  already 
established measures and their divisions (such as the year and its 
twelve months) and because the number 12 was rich in divisors. 
He saw similar advantages in base 60, but considered this out of 
the question because of the 50 additional symbols that would be 
required. Buffon’s explanation of base systems in general and a 
conversion  procedure  from  base  10  to  an  arbitrary  base  was 
similar to Bezout’s.

Buffon went beyond Bezout in the following respects:
(i) He took the slightly more sophisticated view that the last 

remainder k (in Bezout’s conversion procedure) is also the last 
quotient, the last division being by β0, i.e., by l.

(ii) He showed that the highest power of β, namely βp, that is 
contained in N, can be found by noting that N = βv yields v = (log 
N) / (log β) and that the integral part of v must be equal to p. So, 
for example, when N = 1738 and β = 5, then v = (log 1738) / (log 
5) = 4+ and hence p = 4. It follows that the base 5 representation 
of  1738  must  have  5  digits,  as  in  fact  it  does,  since  1738  = 
23,4235.

Georg  Brander’s  booklet  of  40  pages  appeared  in  1775.12 

Although its author was a member of the Bavarian Academy of 
Science, the book was written in a light conversational German. 
In  the  preface,  Brander  expressed  the  hope  that  this  work  on 
dyadics  might  serve  the  reader  for  recreational  purposes,  and 
perhaps even for keeping one’s personal accounts unintelligible to 
prying eyes. He indicated that his knowledge of this  topic had 
come from Wiedeburg’s dissertation. From the same source came 
his belief that the ancient Chinese had known and then lost the art 
of  dyadics,  thereby giving  the  great  Leibniz  an  opportunity  to 
rediscover it. 

Brander restricted his work to whole numbers, except for an 
occasional use of fractions like 1/1001 (meaning 1/9). He showed 
numerous examples of the four fundamental operations as well as 
the pulling of square and cube roots. However, all his examples 
and discussion involved only the base two.
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Whereas the Bezout-Buffon procedure for converting a whole 
number N from decimal to β-adic notation had called for division 
by  successively  smaller  powers  of  β (starting  with  the  highest 
contained in N), Brander’s procedure called for repeated division 
by 2. For example, Brander found the binary equivalent of 144, as 
follows:

144 is even, hence one writes 0
halved 72 is even, hence one writes 0
halved 36 is even, " 0
halved 18 is even, " 0
halved 9 is odd, " 1
halved 4 is even, " 0
halved 2 is even, " 0
halved 1 is odd, " 1

Starting from the bottom the digits on the right are now to be 
written next to each other, thusly:

10010000

which is the binary equivalent of 144.
This procedure exposed the binary digits in the opposite order. 

Brander offered no explanation as to why his procedure would 
give the desired result.

FELKEL’S 1785 PAPER ON THE PERIODS OF β-ADIC FRACTIONS

For the fraction 1/7, whose decimal equivalent, 0.142857... has a 
period  of  6  digits,  Anton  Felkel  showed the  following base  β 
equivalents:13
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For
β = 3 0.010212...
β = 5 0.032412... complete
β = 17 0.274e9c... periods

β = 2 0.001...
β = 4 0.021... 1/2 complete
β = 9 0.125... periods
β = 11 0.163...

β = 6 0.05... 1/3 complete
β = 13 0.1b... periods

β = 8 0.1... period of length 1

where the letters a, b, c, etc. have been introduced as digits for 
ten, eleven, twelve, etc.

As Felkel explained in his introductory remarks, since for a 
fraction of the type 1/p where p is prime, the maximum length is 
(p – 1); he decided to call periods of that length complete and the 
shorter  ones  incomplete. He  decided  to  distinguish  between 
periods  of  odd  and  even  lengths,  since  he  had  concluded,  in 
substance, that 

Theorem 4.1: The digits of the second half of a period (in the β-
adic expansion of  a  fraction  l/p) of even  length are the  (β–1)  
complements of the corresponding digits of the first half. 

For β = 10 and p = 7, for example, this means that if the period 
142857 is separated into two halves and the second half is written 
under the first, subsequent addition of these two halves will result 
in all 9’s, thusly:

142
857
999

For β = 5 and p = 7, the period 032412 will give 4 as the sum 
of corresponding digits from the first and second half.
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Felkel made use of Theorem 4.1 by abbreviating, for example:

0.01020413321 43424031123... (1/23 in base 5)

to 0.01020413321 I,

where the symbol I was to indicate that only the first half of the 
period had been given, but that the second half could easily be 
reconstructed since its digits would be the 4’s complements of the 
corresponding members of the first half.

The β-adic equivalents of 1/7, displayed earlier, show that 1/7 
may have periods of length 1, 2, 3, and 6, precisely the divisors of 
6. Felkel noted, though in this case did not display, that for 1/211 
all 16 divisors of 210 will appear as period lengths. He indicated 
that 13 of these can be found (in decreasing order) by converting 
1/211 to the bases 2, 4, 18, 26, 5, 10, 19, 12, 58, 15, 55, 14, and 
210. He announced, in substance:

Theorem 4.2:  If β is prime, then the divisors of (β–1) are the 
only numbers  that  can appear as  period lengths  of  the  β-adic  
representation of 1/β;  moreover, every such divisor will appear  
as a period length.

In  an  apparent  effort  to  balance  Theorem 4.1  with  another 
theorem about periods of odd length, he stated, in effect: 

Theorem 4.3: If the β-adic representation of 1/p has a period 
of odd  length,  then  the  fraction (p  –  1)/p  (which  is  the  1’s  
complement of 1/p)  has a period of the same  length, with each 
digit being the (β – 1)’s complement of the corresponding digit of  
the period of 1/p.

Felkel  failed  to  notice,  or  at  least  to  indicate,  that  the 
hypothesis of this theorem could be weakened to “a period of odd 
or even length.”

Felkel pointed out that in order to find the β-adic equivalent of 
any rational fraction, for any β, one should proceed as one does in 
base 10, i.e., divide the denominator into the numerator and do so 
in base  β arithmetic. Thus, to get the dyadic equivalent of 1/13, 
one should divide 1101 into 1, or to
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get the base 30 equivalent of that fraction, d into 1, where d is the 
digit for thirteen. In the latter example, as for all large β, Felkel 
showed  that  the  inconvenience  of  learning  new  digits  and 
multiplication facts may be circumvented by expressing the larger 
digits decimally. Thus instead of writing

1/13 = 1/d = 0.296slo,

one could write

1/13 = 

where , for example, has been boxed in since it represents the 
single digit s. (His assignments start a = 10, b = 11, etc., but he 
omitted  the  letter  j,  and  hence  s =  27,  etc.)  He  reminded  his 
readers that for  β = 10, the usual procedure exposes successive 
digits of the decimal equivalent by repeatedly “attaching a zero” 
and that this amounts to successive multiplication of the dividend 
by 10, or in general by β.

He further pointed out that 1/9 = 0.1... and 1/11 = 0.09... are 
special cases of

Theorem 4.4: 1/(β – 1) = (0.1...)β 

and

Theorem 4.5: 1/(β + 1) = 0.0Z...)β  where Z = β – l.

Each of these theorems reflects an algebraic identity.
A century before Felkel, Jordaine had shown how to convert a 

terminating  decimal  fraction  into  a  duodecimal  one.  In  effect, 
Felkel  modified  Jordaine’s  procedure  to  the  point  where,  in 
Leonard  Dickson’s  words,  he  could  be  credited  with  having 
shown “how to convert directly a period fraction written to one 
base into one to another base.”14

Two  examples  from  Felkel’s  paper  will  illustrate  the 
procedure.
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Example 1.

a. 0.076923
b. 0.461538
c. 2.769228//// (30)
d. 4.615380// (4)
e. 3.692304// (7)
f. 4.153842// (6)
g. 0.923076
h. 5.538456//// (61)
i. 3.230766// (9)
k. 1.384614 (5)
l. 2.307690// (2)
m. 1.846152// (3)
n. 5.076918// (23)

This  shows  how  he  found  (0.076923...)10 to  equal 
(0.024340531215...)6.  Seemingly, he worked only with a single 
period, 076923, which he repeatedly multiplied by 6 to expose, 
one by one, the digits of the base 6 equivalent, subtracting after 
each such multiplication the newly exposed digit. In substance, 
however,  he  was  multiplying  not  just  a  single  period,  but 
0.076923 076923 076923.... He took this into account when he 
crossed out (in step c.) the digits 2 and 8 and substituted the digits 
3 and 0, since he was “carrying” a 2 from the multiplication of the 
2nd period. Similarly, at each step he showed how he modified 
his  product  because of  the  “carry.”  For  each step,  the  amount 
carried (from one period to the next) is, of course, equal to the 
newly exposed base 6 digit.  The integral  parts of  the fractions 
listed vertically give the digits of the desired base 6 equivalent. In 
Example 2, he shows how the given (0.032412...)5 was converted 
to (0.010212...)3.
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Example 2.

a. 0.203241
b. 1.120323// (4)
c. 0.412032
d. 2.241201// (3)
e. 1.324114//// (20)
f. 2.032410// (2)

where the given period, 203241, was repeatedly multiplied by 3, 
using base 5 arithmetic. The product was appropriately increased 
for any “carry” and decreased by the newly exposed digit before 
the next multiplication.

Felkel  pointed  out  (without  giving  any  examples)  that  his 
procedure could be modified for use with irrational numbers. If 
one  desired  the  first  m  digits  of  the  base  y equivalent  of  an 
irrational number x, one would have to use the first n digits of the 
given base β equivalent of x, making sure to pick n large enough 
to have included all digits that might influence the desired string 
of digits.

DUODECIMAL VERSUS A DECIMAL METRIC SYSTEM

On October 27, 1790, the Metric Commission, consisting of 
Jean  Charles  Borda,  Joseph  Louis  Lagrange,  Antoine  Laurent 
Lavoisier, Mathieu Tillet, and Marie Jean Antoine Nicolas Caritat 
Condorcet, made a “Rapport” to the Academy of Science in Paris, 
which  indicated  that  the  Commission  had  briefly  considered 
proposing the replacement of decimal arithmetic for common use 
by the duodecimal system and a metric system duodecimalized to 
match.  However,  it  was  decided  that  proposing  a  change  in 
common  arithmetic,  in  addition  to  a  change  in  weights  and 
measures,  would  doom  their  project  to  failure.  While  it  was 
important  that  both  arithmetic  and  the  metric  system have  the 
same radix, this could be accomplished
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by leaving common arithmetic intact and decimalizing the system 
of weights and measures.

Any advantages of  base 12 would be due to its  richness in 
divisors relative to 10. Also, certain common fractions such as 1/3 
and 1/4 would have simpler equivalents in base 12 notation. As 
one can gather from a later paper by Jean Delambre at least one 
member  of  the  Commission,  namely  Lagrange,  refused  to 
concede even such a slight theoretical advantage to base 12.15 He 
argued  that  poorness  in  divisors  was  an  advantage,  and  that 
perhaps they should consider  a prime number,  such as 11.  No 
proper  fraction  (with  11  as  a  denominator)  would  then  be 
reducible and each would neatly preserve 11 as a denominator.

To this day, lovers of the duodecimal numeration system have 
been fighting a  rearguard action against  wider adoption of  the 
decimalized metric system.

LAGRANGE, LAPLACE, LAMARQUE, AND LEGENDRE

In his first  letter to future teachers at the  École Normale in 
Paris in 1795, Joseph Lagrange said:

Arithmetic is divided into two parts. The first is based on 
the  decimal  system  of  notation  and  on  the  manner  of 
arranging numerals to express numbers. The first comprises 
the  four  common  operations  of  addition,  subtraction, 
multiplication, and division,– operations which, as you know, 
would be different if  a  different system were adopted,  but, 
which it would not be difficult to transform from one system 
to another, if a change of systems were desirable.

The second is independent of the system of numeration. It is 
based  on  the  consideration  of  quantities  and  on  the  general 
properties of numbers.16

Lagrange further stated, in substance:

Theorem 4.6: A number is divisible by (β – 1) if the sum of its  
β-adic  digits  is  divisible  by  (β –  1).  This  is  a  special  case  of 
Pascal’s General Divisibility Theorem, though Pascal had fallen 
short of actually stating it.
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Lagrange made a slight improvement on Pascal’s Divisibility 
Test for 7 (β = 10), by making use of negative remainders. Thus, 
Pascal’s Theorem 2.5 had involved the remainders 1, 3, 2, 6, 4, 
and 5, but Lagrange used 1, 3, 2, -1, -2, and -3.17

With  these  future  teachers,  Lagrange  did  not  discuss  his 
supposed preference for a prime base, such as 11. His colleague 
Pierre-Simon  Laplace,  who  lectured  at  the  Ecole  Normale  the 
same year, let it be known that the most preferable of all possible 
bases would be one that is not too large and that has a great many 
divisors.  Base  12  met  these  requirements.  Laplace  indicated 
further that only two additional digits would be needed, but the 
Commission on the metric system rejected 12 in favor of 10, lest 
the  entire  project  be  jeopardized.  To  convert  a  number  from 
decimal  to  duodecimal  notation,  Laplace  recommended 
repeatedly dividing by 12 (or by β, if one were converting to  β-
adic  notation) and noting the  successive  remainders,  which,  in 
reverse  order,  would  constitute  the  digits  in  the  new notation. 
Before  Laplace  stated  his  preference for  β = 12,  he  reviewed 
Leibniz’s work on  β =  2. He accepted without reservations the 
idea that the ancient Chinese had used dyadics and that Leibniz 
had  rediscovered  it,  although  he  was  bemused  by  Leibniz’s 
having seen dyadics as the image of Creation.

The year 1795 was the second year of the Republic during the 
French Revolution, which explains in part why such outstanding 
mathematicians  as  Lagrange  and  Laplace  were  lecturing  at  a 
teacher’s college. During the third year of the Republic, as the 
title  page  proudly  proclaimed,  the  second  edition  of  Jean 
Lamarck’s three-volume work on French flowers appeared. The 
first edition had been published in 1778. It is mentioned here only 
because  Giuseppe  Peano  was  later  to  declare  that  Lamarck’s 
classification  scheme was an application  of  the  binary system. 
The scheme is more often referred to as being dichotomous, and 
there is no obvious indication that Lamarck himself thought he 
was applying the binary system.

Before commenting on a minor contribution to this topic by 
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Adrien-Marie  Legendre,  it  will  be  convenient  to  introduce the 
concept  of  γ-adic  coded  β-adic  notation.  Felkel  had  called 
attention to the fact that for a large  β it  may be convenient to 
sidestep the introduction of additional symbols and use instead 
decimal  notation to  represent  the  digits.  Thus he  had shown a 

boxed in  instead of the digit s. The definition of a standard 
numeration system does not specify the nature of the  β symbols 
that  might  be  used,  and  hence  both 
0.296slo  and    are  in  standard base  30  notation.  The  latter, 
however, since it also involves base 10, may be called decimal 
coded  base  30  notation.  Similarly,  Caramuel’s  use  of  base  60 
involved  the  decimal  coded  base  60  system.  The  more 
sophisticated  versions  of  γ-adic  coded  β-adic  notation have 
leading zeros, so that every base  β digit will be coded into a  γ-
adic string of equal length. If Felkel’s version were so modified, it 
would appear as

or simply as 

00.02090626272023

where  the  reader  carries  the  burden  of  counting  off  to  decide 
where one base 30 digit ends and the next one begins.

In a mere footnote, Legendre gave a hint as to how one might 
convert quickly from decimal to binary notation when the given 
number N is rather large.18 For N = 11183445, to use his example, 
he divided N by 64, obtaining a remainder of 21 and 174741; then 
dividing that quotient by 64, he obtained a remainder of 21 and a 
quotient of  2730. Upon the next division by 64, he obtained a 
remainder of 42 and a quotient of 42. In effect, he had converted 
N to decimal coded base 64, i.e.,

N = (42,42,21,21)64

and now noting that 42 = 1010102 and 21 = 101012, he wrote 

N = 101010 101010 010101 010101.

This  last  string  of  binary  digits  (especially  with  the  grouping 
shown) may be interpreted as being in binary coded base 64
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notation (note some leading zeros supplied by Legendre), but this 
is  at  the  same  time  true  binary  notation.  Underlying  this  is  a 
principle tacitly assumed by Legendre, namely

Theorem 4.7:  If β =  γi for some positive integer i,  and N = 
(an...a0),  is a  γ-adic string of (n + 1)  digits where (n + 1)  is a 
multiple of i, if necessary by the introduction of leading zeros; if  
these (n + 1)  digits are grouped into (q + 1)  groups of i  digits  
each, calling these (starting from the right), G0, G1, ... Gq, then

(an...a0)γ = (Gn...G0)β.

The right side of this last equation may be called a γ-adic coded 
β-adic string.

A frequent, tacit application of this theorem occurs when the 
decimal string 1984 is read “nineteen hundred and eighty-four,” 
i.e., (19,84)100, or as a decimal coded base 100 string.

Why  was  Legendre  interested  in  the  binary  equivalent  of 
certain  large  numbers?  He  was  introducing  certain  theorems 
concerning the “Legendre symbol,” with which he could settle 
whether or not a prime p was a divisor of the expression (x2 + a) 
for  a  given  positive  integer  a  and  for  some  integer  x.  In  his 
Example I, he settled in the negative, whether the prime p = 1013 
is a divisor of (x2 + 601). Without his newly introduced theorems, 
Euler’s criterion would have had to suffice. This called for raising 
the integer a to the kth power where k = (p – 1)/2, and discarding 
multiples of p along the way. A final outcome of (–1) would settle 
the  question  in  the  negative,  (+1)  in  the  affirmative,  no  other 
outcome being  possible.  Thus,  to  verify  his  result  using  older 
methods, the number 601 would have to be raised to the 506th 

power, discarding multiples of 1013 along the way. This older 
method could be expedited by noting that

506 = (111 111 010)2

= 28 + 27 + 26 + 25 + 24 + 23 + 21

= 256 + 128 + 64 + 32 + 16 + 8 + 2.
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Thus 601 would have to be squared 8 times to find 601256, 7 times 
to find 601128, and so on. The product of these individual results 
would give the final result for 601506. In Legendre’s Example III, 
similar verification by older methods involved raising 1459 to the 
11,188,445th power, hence the desirability of knowing the binary 
equivalent of the number 11,188,445.
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· V ·
THE NINETEENTH CENTURY

I. THE FIRST QUARTER

GAUSS’S Disquisitiones Arithmeticae
Carl Gauss’s Disquisitiones Arithmeticae appeared in 1801. It 

dismissed  nondecimal  numeration  with  a  mere  footnote.  “For 
brevity  we  will  restrict  the  following discussion  to  the  system 
which is commonly called decimal, but it can easily be extended 
to any other.”1 This footnote referred to paragraph 312, in which 
the periods of the decimal equivalents of rational fractions were 
being treated.

Gauss’s book introduced the theory of modular congruences, 
and thus  provided  the  tools  for  simple  proofs  of  the  theorems 
announced by Felkel and the divisibility rules of Pascal. This was 
certainly not in line with the expectations Leibniz had a century 
earlier  when  he  introduced  the  binary  system  as  a  promising 
theoretical  tool.  As  Mahnke  was  later  to  see  it,  the  historic 
development went differently from Leibniz’s hopes.2 Instead of 
the  study  of  periodic  decimal  and  nondecimal  fractions 
contributing to the development of number theory, it was to be 
the  systematic  construction  of  number  theory  by  Gauss  that 
became the key to a full understanding of periodic decimal and 
nondecimal fractions.

OZANAM’S Recreations in Mathematics
The  1803  edition  of  Jacques  Ozanam’s  Recreations  in 

Mathematics (enlarged by Montucla and translated into English 
by Charles Hutton) devoted pages 2–9 of volume I to nondecimal 
numeration. Ozanam explained Leibniz’s binary system and
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then commented on the  binary interpretation of the  Figures  of 
Fohy. “It is very singular, that a Chinese enigma should find its 
Oedipus only in Europe, but perhaps in this explanation there is 
more ingenuity than truth.” Ozanam clearly considered base 12 
the best possible base; he cited all the usual reasons of richness in 
divisors and dovetailing with certain existing units of measures 
and their subdivisions. In fact, he chided Simon Stevin for having 
sought such dovetailing by decimalizing weights and measures, 
rather than by duodecimalizing the arithmetic.

PETER BARLOW (1810–14)

Peter  Barlow  dealt  with  nondecimal  numeration  in  three 
separate publications during 1810–14. In 1810 he published an 
article entitled “On the Method of Transforming a Number from 
one Scale of Notation to Another, and its Application to the Rule 
of  Duodecimals.”  The  article  did  not  consider  10  the  best  of 
possible  bases,  but  accepted  it  as  satisfactory  and  certain  to 
remain in common use. As to how to transform a number from 
decimal  to  duodecimal  notation,  he  recommended  the  method 
suggested  by  the  following example,  where  it  is  required  that 
decimal 1728 be transformed to the “duodenary scale.” Here A = 
10 and B = 11.
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Barlow gave  three  examples  of  “applications  to  the  rule  of 
duodecimals,” one of which involved the requirement that 17 feet, 
3′,  4″ (meaning 3 inches and 4/12 inches) be multiplied by 19 
feet, 5′, 11″. He recommended transforming to 15.34 17.5B with 
the resulting answer of 240.968812 = 336 ft, 9′, 6″, 8′′′, 8′′′′.

Barlow’s 1811 An Elementary Investigation of the Theory of  
Numbers contained a chapter “On the different Scales of Notation 
and their Application to the Solution of Arithmetical Problems.” 
Here he recommended repeated division by β as the best method 
of transforming a number from decimal to β-adic notation. There 
is no indication that Barlow was familiar with Gauss’s theory of 
congruences;  he  most  certainly avoided  the  use  of  congruence 
notation  both  in  statements  and  proofs  of  his  theorems. 
Nevertheless, he advanced beyond the Pascal type of divisibility 
theorem by giving not only a criterion for divisibility by K, but 
also a criterion for predicting precisely what the remainder will be 
in  case  the  number  is  not  divisible  by  K.  Thus  he  stated  in 
substance:

Theorem 5.1:  If Ts and Ta are the simple and alternating β-
adic digit sums of N, then N will have the same remainder as Ts 

upon division by (β – 1), and N will have the same remainder as 
Ta upon division by (β + 1).

For  base  10,  this  theorem  is  the  basis  of  the  checking 
procedure known as “casting out nines,” and also for a similar 
procedure  involving eleven.  Barlow recommended the latter  in 
addition to the former whenever one wanted additional assurances 
of the accuracy of arithmetic results.

Barlow explained,  as  had  some  earlier  writers,  that  base  2 
notation  was  a  key  to  the  fact  that  every  integral  number  of 
pounds could be balanced on a scale by having weights on the 
other restricted entirely to single specimens of each binary place 
value.  He failed  to  show,  or  even mention,  that  such a  set  of 
weights would constitute a minimum set of weights.

The fact that 

716 = (222112)3
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suggests that an object weighing 716 pounds could be balanced 
by using 2 weights of 35 each, 2 of 34, 2 of 33, 1 of 32, 1 of 31, and 
2 of 30. More generally, the fact that a unique base 3 string exists 
for  each positive  integer  readily  suggests that  a  set  of  weights 
consisting of two specimens of 3i pound weight (for each integer 
from i = 0 to i = k) would suffice for 
weighing any object of an integral number of pounds up to 3’+’–1 
Barlow showed that a smaller set of weights, consisting of but a 
single specimen of  each  3’  pound weight,  would  also  suffice, 
although to not  quite as high a limit,  if  one were permitted to 
place weights in  either pan. Thus a 716 pound object could be 
weighed by placing a 32,  a 31,  and a 30 pound weight with the 
object to be weighed, and a 36 pound weight in the other pan, 
since

716 = 36 (32 + 31 + 30)

This fact could be written

716 = (1 000 111)3

with Barlow’s notation of 1 for (–1). Barlow explained that every 
positive integer may be expressed in this modified base 3 notation 
(restricted to the three digits 1, 0, and 1) since the identity

2(3k) = 3k + 1 – 3k

can be applied repeatedly to rewrite an ordinary base 3 string, 
such as (222112)3, until every appearance of the digit 2 has been 
eliminated. This results in the modified base 3 notation, (1 000 
111)3.

Barlow concluded his chapter with discussions of the relative 
merits  of  various  bases,  and  the  awkwardness  of  the  impure 
decimal system used by the ancient Greeks. He considered base 
12 to be the ideal base for all the usual reasons.

In  1814,  Barlow’s  third  publication  on  this  topic  appeared. 
This work consisted of certain entries (“Binary Arithmetic” and 
“Notation of the different Scales”) in his A New Mathematical
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and Philosophical Dictionary. These entries contained nothing 
significant on this topic beyond Barlow’s earlier work.

CHARLES HUTTON (1815)

Charles  Hutton  published  his  A  Philosophical  and 
Mathematical  Dictionary in  1815.  He explained under “Binary 
Arithmetic” that “this kind of Arithmetic was invented by Leibniz 
who  pretended  that  it  is  better  adapted  than  the  common 
arithmetic,  for  discovering  properties  of  numbers,  and  for 
constructing tables.”

JOHN QUINCY ADAMS (1817) 

In  1817  John  Quincy  Adams  presented  his  Report  upon 
Weights  and  Measures in  compliance  with  a  resolution  of  the 
Senate of March 3, 1817. This was a milestone on the path toward 
the  1866  legalization  of  the  optional  use  of  the  decimalized 
international metric system within the United States. 

JOHN LESLIE (1817)

The  year  1817  also  brought  forth  John  Leslie’s  The 
Philosophy  of  Arithmetic, with  a  lengthy  chapter  entitled 
“Numeration.” Leslie covered most of the then known results on 
nondecimal numeration for both whole and fractional numbers. 
To illustrate the flavor of his treatment the following is quoted:

To reduce  vulgar  fractions  to  any  scale,  we  have  only  to 
multiply the numerator by the root of that scale, and divide by 
the denominator; and to repeat this process, if requisite, on the 
successive  remainders,  till  the  quotients  either  terminate 
absolutely, or glide into circulation. Suppose it were sought to 
represent on the Senary, Octary, and Denary Scales, the fraction 
355/113 or 3–16/113, which Peter Metius, a distinguished Dutch 
mathematician, and near relation of Adrian Metius of
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Alkmaer, about the close of the sixteenth century, assigned for 
the approximate ratio of the circumference to the diameter of a 
circle. 

After carrying out his announced plan, Leslie concluded that

355/113 = (3.0503301...)6

355/113 = (3.110376....)8

355/113 = (3.141593....)10

II. THE SECOND QUARTER

HEINRICH WILHELM STEIN (1826) 

In  1826  Stein  published  an  article  devoted  entirely  to  a 
comparison of various numeration systems.3 He argued that for 
base 10, one requires the concepts of 2, 3, 4, 5, 6, 7, 8, and 9 as 
well as 1, 10, 102,  103,  and 104 in order to express all positive 
integers up to (but not including) 105—or a total of 13 concepts. 
In general, for base  β, one would require (x +  β–2) concepts to 
express numbers up to β . Letting n = βx, the number of concepts 
could be expressed

log n
log β

 β – 2= f β .

For a given n, that base would be best (require the least number of 
concepts)  for  which  f(β)  would  be  a  minimum.  By  Stein’s 
criterion, if n is not too large, bases 2 and 3 fare poorly, 5 and 6 
moderately well. Stein reported satisfaction with 10 on this basis 
and indicated no advantage in higher bases.

ANDRÉ-MARIE AMPÈRE (1838)

In  1838  appeared  André-Marie  Ampère’s  essay  on  the 
philosophy of science which included the author’s classification 
scheme for the totality of human knowledge. Guiseppe
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Peano was later to insist that this scheme represented a conscious 
application of Leibniz’s binary system, but Ampère himself gave 
no such indication. Ampère partitioned all of human knowledge 
into two kingdoms and further  divided each of  these  into  two 
subkingdoms until  there  appeared  eight  cells  in  the  third  such 
partition.  One  of  these  eight  is  mathematics,  whose  further 
partitioning is shown in Figure 8.

AUGUSTIN-LOUIS CAUCHY (1840)

Cauchy showed in 1840 (publication delayed until 1885) that 
decimal  numeration  may  be  modified  analogously  to  the  way 
Barlow had modified base 3 notation.4 Consistent with Barlow’s 
notation, Cauchy introduced 4b for ( – 4), 3 for ( – 3b), and so on. 
He showed that the ten digits 4b, 3b, 2b, 1b, 0, 1, 2, 3, 4, and 5 could 
be used in place of the usual 10, since 6 = 14b, 7 = 13b, 8 = 12b, 9 = 
11b.  Cauchy argued that this modified decimal system would be 
simpler  in  some  respects  than  the  standard  one.  He  called 
attention to the fact that 112 = 121, 122 = 144, and 132 = 169 
would be analogous (in appearance if not substance) to 11b2 = 12b1, 
12b2 = 14b4, 13b2 = 169. He also showed that

1/7 = 0.142857142857...
1/7 = 0.1431b4b3b1431b4b3b...

where, in the latter, the second half of the period repeats the same 
digits  as  the  first  half,  except  for  opposite  sign.  As  further 
examples of this latter phenomenon, he cited

1/11 = 0.090909...
1/11 = 0.11b11b11b...

and

1/13 = 0.076923076923...
1/13 = 0.12b3b1b2312b3b1b23...

In conclusion Cauchy pointed out that in this modified base 10 
notation, one could easily convert log N to log (1/N) by changing 
the sign of every digit.
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FIGURE 8. The  Subdivisions  of  Mathematics  According  to 
Ampère’s Classification Scheme of 1838.
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D. VINCENTE PUJALS (1844)

Outside  of  the  mainstream  of  western  mathematical 
scholarship, there appeared in 1844  Filosofia de la Numeracion 
by D. Vicente Pujals de la Bastida. This work extolled the virtues 
of  base 12. Pujals  traced the history of numeration and finally 
rejected, for one reason or another,  all  bases except 12. While 
most of the book is then devoted to pointing out the advantages of 
this  base  (simpler  fractions,  simpler  divisibility  rules,  easier 
computation), it appears that Pujals would have favored base 12 
regardless, since he considered this base God’s choice. Are there 
not  12 lost tribes of  Israel,  12 major prophets,  12 apostles,  12 
major  and  minor  scales  of  music  to  accompany the  hymns  to 
God? Pujals thought that for common use we should replace base 
10 by base 12 as a prelude to a happier age living in consonance 
with God’s plan. Scientists would have no difficulty making the 
change, but would the common man who is used to counting on 
his fingers? He could get used to counting the 12 joints of the four 
fingers of one hand.

III. THE THIRD QUARTER

AUGUSTUS DEMORGAN (1853)

Augustus DeMorgan’s The Elements of Arithmetic of 1853 is 
probably  the  earliest  school  text  in  the  English  language  to 
include nondecimal numeration. DeMorgan wrote later that “The 
student should accustom himself to work questions in different 
systems of numeration, which will give him clearer insight into 
the nature of arithmetical processes than he could obtain by any 
other  method.”5 In  the  1853  text  such  different  systems  of 
numeration (bases 2, 5, and 12) are found not under the topic of 
“Numeration”  but  under  “Scales  of  Notation.”  Under 
“Numeration” DeMorgan continued a long tradition of explaining 
base 10 numeration only.
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SIR ISAAC PITMAN

In  the  February  9,  1856 issue  of  his  Phonetic  Journal, Sir 
Isaac Pitman printed an article entitled, “A New and Improved 
System  of  Numeration  and  Measurement,”  that  is,  an  article 
extolling the virtues  of  the  duodecimal system. As his  brother 
later wrote: 

He seemed for years almost as hopeful of the adoption of the 
duodecimal scheme as of the success of the Writing and Spelling 
Reform;  and  of  its  ultimate  general  acceptance  and  use,  he 
entertained  no  doubt.  The  three  R’s,  reading,  riting,  and 
reckoning,” he urged, would then become so easy and natural 
that their acquisition would indeed “come by nature.”6

AIMÉ MARIAGE (1857)

With equal fervor Aime Mariage came out in favor of base 8 
in 1857.7 Mariage’s book essentially offered nothing beyond the 
arguments that Swedberg and his king had offered a century and a 
half earlier—except for more explicit examples of the advantages 
of this base in which 1/64 would be written 0.01 instead of the 
more awkward decimal fraction 0.015625.

JOHN WILLIAM NYSTROM (1862)

In tune with Swedberg and Mariage, who wanted the base to 
be a power of 2, John William Nystrom, an American engineer, 
advocated base 16 in his 1862 publication entitled  Project of a  
New System of Arithmetic, Weight, Measure and Coins, Proposed 
to be Called the Tonal System with Sixteen to the Base. He wrote 
on page 9:

It is evident that 12 is a better number than 10 or 100 as a 
base, but it admits only one more binary division than 10, and 
would therefore, not come up to the general requirement.

The number 16 admits binary division to an infinite extent, 
and would therefore, be the most suitable number as a base for 
arithmetic, weight, measure, and coins.
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He wrote further, on page 11: 

The  International  Decimal  Association  is  in  favor  of 
introducing  the  French  metrical  system,  which  is  the  most 
complete in existence, but has the evident disadvantages herein 
alluded to.

Nystrom advocated a 16 hour day, months of 16 or 17 days, a 
musical scale of 16 notes in the octave, a temperature scale with 
256 (i.e. 16’) degrees between the freezing and boiling points of 
water, and of course a hexadecimally divided circle.

DeMorgan,  on  page  371,  asked  how  to  explain  why  “an 
engineer who has surveyed mankind from Philadelphia to Rostof 
on  the  Don should for  a  moment  entertain  the  idea of  such  a 
system being actually adopted,...”8

Four years later Nystrom came out in favor of the duodecimal 
system.  His  pamphlet  On  the  French  Metric  System:  with  a  
Discussion of a Duodecimal Notation left no doubt that he wanted 
to prevent American adoption of the decimalized metric system. 
He objected  to  the  length  of  the  meter  and  its  inability  to  be 
broken into four parts without involving fractional decimeters. At 
any rate, such a fourfolded meter would be inconvenient since it 
would not fit into an ordinary pocket. He also disliked the metric 
system because it was French; because it did not admit of binary 
division  as  required  in  practice;  and  because  its  use  would 
necessitate  altering  drawings,  patterns,  taps,  dies,  reamers, 
mandrils, and so on.

E. STAHLBERGER (1869)

Without  Barlow’s  convenient  modified  base  3  notation, 
Stahlberger  analyzed  the  “either  pan”  weighing  problem 
somewhat  more  deeply.9 In  his  1869  article,  he  specified  the 
upper limit, (3n-1–1)/2 that may be weighed with the set of weights 
1, 3, 32, ..., 3n. He also provided a formula, namely

k =
log 2L  1

log 3
− 1
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for  determining  k,  the  highest  power  of  3  to  be  involved  in 
weighing all integral weights up to L inclusive. For L = 1000, k = 
5.9+,  indicating that 36 = 729 should be the highest power of 3 
involved.

A. SONNENSCHEIN (1870)

An English language exercise book by Sonnenschein appeared 
in  1870  and  included  exercises  in  nondecimal  numeration.10 

“Express 760 in each scale from the binary to the duodecimal 
scale” was one of them. Others required addition, multiplication, 
subtraction, and division to be performed in nondecimal scales. 
On page 75, under “Opinions of the Press,” one finds the author 
identified  as  a  “pupil,  and  a  thoroughly  taught  pupil  of  Mr. 
DeMorgan.”

J. W. L. GLAISHER (1873)

In his article in the Messenger of Mathematics, Glaisher pointed 
out that the fact 1/81 = 0.0b1b2b3b4b5b6b7b9b... can be generalized to all 
bases β. He proved:

Theorem  5.2:  For  all  bases  β, 1/(β–1)’  =  0.0123...xy... 
wherex= β–3and y= β–1.

Glaisher’s proof depends simply on the binomial expansion of (β 
– 1)–2, which is

β–2 + 2β–3 + 3β–4 + ... + nβ–n–1 + ...

whose coefficients are 1, 2, 3, ..., n, .... When this expansion is 
expressed in base β notation, the coefficients from n = β on will 
require more than a single digit,  resulting in a carrying pattern 
that produces the period 0123...xy. Here x = β – 3 and y = β – 1, 
so that the period runs through all base β digits except the digit (β 
– 2).

HERMANN HANKEL (1874)

Hankel worked out further details on Stein’s criterion for “best 
base,” and provided the following table, showing the
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number of concepts required to express all whole numbers up to 
M inclusive for selective bases β:11

For β =   2    3    4    5    6  10  12  20
For M = 103 11    8    8    8    9  12  13  21
For M = 106 21  15  12  13  13  15  17  24

Thus, for M = 106, base 4 comes out best.

IV. THE FOURTH QUARTER

MORITZ CANTOR (1875)

Moritz  Cantor  reported  that  carnival  booths  were  selling  a 
“Tell  Your  Age”  game  for  12  Pfennig  and  that  the  game 
astonished  him  until  he  discovered  it  to  be  an  application  of 
binary numeration.12 The game consisted of seven cards having 
the numbers from 1 to 100 distributed over them—some numbers 
appearing on more than one card. Card I had the key number 1 
associated with itself, II had 2, III had 4, IV had 8, V had 16, and 
VII had 64.  A 37-year-old person would see his  age listed on 
cards I, III, and VI and so inform the holder of the cards. The 
cardholder would simply add the key numbers 1,  4,  and 32 to 
arrive, astonishingly, at 37. As Cantor analyzed the game, every 
number up to 100 could be represented by a 7-bit string, 37 for 
example by 0100101. The number 37 would therefore appear on 
cards I, III, and VI in accordance with which bits (starting from 
the right end of the string) were “1”s rather than “O”s. Of course, 
the  seven  cards  would  have  sufficed  to  extend  the  range  of 
possible ages to 127, the highest number that can be expressed as 
a 7-bit string, namely 1 111 111.

FELIX MÜLLER (1876) 

Dr. Felix Müller replied to Cantor within the year in the same 
journal.13 Müller contended that as early as 1859, the 11th graders 
of a certain secondary school in Berlin had dealt
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with this problem as a by-product of proving the identity:

(5.1)
1− x2

1− x
⋅1− x4

1 − x2⋅
1 − x8

1− x 4⋅
1− x16

1 − x8 ⋅
1− x32

1− x16 =
1− x32

1− x

which in turn implies the identity:

(5.2) 1x 1x21x41x81x16  =
1xx2x3x 4x5...x31.

It should be noted, argued Müller, that the exponents of the 
right side of 5.2 include every whole number from 1 to 31. Since 
these  must  be  the  result  of  carrying  out  the  indicated 
multiplication of the left side of 5.2, it follows that each exponent 
on the right is the sum of some combination of exponents of the 
left. Hence every whole number from 1 to 31 inclusive can be 
expressed as the sum of some combination of the first 5 powers of 
2, namely 1, 2, 4, 8, and 16.

Müller gave as one possible interpretation of this last fact the 
explanation that a set of 5 weights (consisting of 1, 2, 4, 8, and 
16) would suffice to weigh all objects of integral weights up to 
31. By dealing with generalized versions of 5.1 and 5.2, Müller 
indicated that the results could readily be extended up to 2n – 1 for 
any n and certainly to 27 – 1 = 127, as required by those carnival 
cards.

Moreover, Müller reported, those 11th graders had designed a 
set of 5 cards containing the numbers from 1 to 121 inclusive, 
based on powers of 3, and sometimes taken with a minus sign. 
However, the reader of the cards would have to specify not only 
which of the five cards contained his age (or other number he was 
temporarily keeping secret), but whether the number appeared in 
light or bold print—the latter indicating that a minus sign would 
have to be used. Thus, 49, for example, appears light on I and II, 
bold on III and IV, and light on V, since

49 = 30 + 31 – 32 – 33 + 34,

a fact which Barlow would have written

40 = (11b1b11)3.
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This  latter  game,  Müller  indicated,  was  a  by-product  of 
dealing with the identity

(5.3)
1 − x3

1− x
⋅1− x9

1− x3⋅
1− x27

1− x9 ⋅...⋅1− x3n  1

1− x3n = 1− x3n1

1− x

which implies the identity

(5.4) 1xx21x3x61x9x18...1x3n

x2⋅3n


= 1xx2x3x4...x3n .

If 5.4 is now divided by xk,  where k = (1/2)(3n+1 – 1) then the 
identity

(5.5) x−11x1x−31x3x−91x9...x−3n

1x3n


= x−k...x−2x−11x1x2x3...xk

results. For n = 4, for example, 5.5 gives the desired result that all 
numbers from 1 to 121 can be expressed in terms of 30, 31, 32, 33, 
and 34—the coefficients –1, 0, and +1 being permitted.

Müller made no reference to Barlow, who had assumed the 
possibility of standard base 3 notation for all whole numbers and 
then had shown that each base 3 string could be modified into his 
modified  base  3  string.  Müller  managed  to  bypass  that 
assumption and prove the desired result directly. The five Müller 
cards appear in Figure 9.

Cantor might have been further humbled if it had been pointed 
out to him that the 1814 edition of Jacques Ozanam’s Recreations  
in  Mathematics  and  Natural  Philosophy already  contained  a 
description  of  a  set  of  “Guess  the  number  cards,”  with  the 
explanation that the trick involved the numbers 1, 2, 4, 8, etc.

P. A. MACMAHON (1886, 1891)

Starting with a series of algebraic identities that included the 
ones Müller had used, MacMahon did a more complete analysis 
of the two problems.14

(1) To assign a series of weights so as to be able to weigh any 
weight of an integral number of pounds from 1 to n inclusive,
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FIGURE 9. The Five Müller Cards of 1876.
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the weights being placed in only one scale-pan; and
(2)  The  same problem when the  weights  may be placed  in 

either of the two scale-pans.
MacMahon further restricted the problems by insisting that no 

other weighings except those from 1 to n should be possible and 
that each weighing is to be possible in only one way. Barlow and 
Müller had also tacitly assumed these restrictions.

MacMahon’s first paper appeared in 1886, but seemed to have 
made no impression on the editor of London’s prestigious science 
journal  Nature, which  published  a  long  series  of  “weighing 
problem”  letters  in  1890–91.  These  letters,  however,  barely 
brought  the  Nature reader  up  to  the  1811  Barlow  level. 
MacMahon’s Nature article put an end to the series of letters. He 
showed  for  N  =  40,  for  example,  that  the  second  weighing 
problem had the following eight solutions:

140 40 weights
1, 313 14 weights
14, 3 8 weights
1, 3, 94 6 weights
113, 27 14 weights
1, 34, 27 6 weights
14, 9, 27 6 weights
1, 3, 9, 27 4 weights

The  “exponents”  indicate  how  many  of  each  weight  are 
represented.

The last of these eight solutions corresponds to the Barlow-
Müller solution and is hereby shown to be the best solution, that 
is, it requires the least number of weights. Among MacMahon’s 
results (announced in each of the three papers) are:

Theorem 5.3: Weighing problem (1) has 2s-1 solutions if n + 1 
= ps, where p is prime.

Theorem 5.4: Weighing problem (2) has 2s-1 solutions if 2n + 1 
= ps, where p is prime.

MacMahon showed that  the  former  of  the  two theorems is 
connected with the problem of how many ways the expression

1+ x + x2 + x3 + x4 + x5 + ... + xn
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may be factored. Similarly, the latter theorem is connected with 
the question of how many ways

x–n + ... + x–2 + x–1  + 1 + x2  + x3 + x4 + ... + xn

may be factored.
According  to  Leopold  Gegenbauer,  the  algebraic  identities 

which formed the bases of Müller’s and MacMahon’s work were 
already  used  by  Euler  (p.  275,  Introductio  in  analysin 
infinitorum) in  showing  that  every  whole  number  may  be 
represented  uniquely  as  a  polynomial  in  3  using  only  3 
coefficients, –1, 0, and l.

E. COLLIGNON (1897)

The  Barlow  and  Cauchy  modifications  of  base β notation 
involved negative digits, but for each negative digit introduced, a 
positive digit was deleted leaving the total number of digits equal 
to  β. Such modification is not possible for base 2, since for the 
introduction of 1b, one cannot dispense with the only positive digit 
1. Collignon investigated the use of base 2 modified to permit the 
three digits, 1b, 0, and l.15

Collignon  found  that  such  modified  base  2  representations 
were not unique, since, for example,

(360)10 = (101 101000)2 = (110101000)2 = (101b01b01000)2

and since

(15827)10 = (11110111010011)2 = (100001b1001b011101b)2

= (100001001b010101b)2.

After several additional examples, he announced his conviction 
that it was always possible to find one modified base 2 string in 
which  the  digit  1  (taken  positively  or  negatively)  would  be 
separated from the next ±1 by one or more 0’s. He indicated that 
this was also true of rational fractions, since 

1/17 = 0.000011110000111100001111...
= 0.00010001b00010001b00010001b...
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and since

4/9 = 0.0111000111000111000...
= 0.1001b001001b001001b001...

Collignon maintained that the usual four fundamental operations 
could be performed more expeditiously in his  modified base 2 
notation than in the standard base 2, since fewer nonzero digits 
would be involved.
He also noted that

23k ≡ 1 (mod 7)
23k + 1 ≡ 2 (mod 7)
23k + 2 ≡ 4 (mod 7),

and hence that one could readily determine divisibility by 7 for 
any N represented as a binary string (standard or modified). For N 
= (100111010011)2 = (101001b010101b)2 for example, the standard 
string indicates that

N = 211 + 28 + 27 + 25 + 24 + 21 + 20,

and hence that

N ≡ 4 + 4 + 2 + 1 + 2 + 2 + 1
≡ 2 (mod 7).

Similarly, the modified string indicates that

N = 211 + 29 – 26 + 24 + 22 – 20

and hence that

N ≡ 4 + 1 – 1 + 2 + 4 – 1
≡ 2 (mod 7).

VITTORIO GRÜNWALD (1885)

Grünwald investigated the use of  β = –10 with the usual ten 
digits, 0, 1, ..., 8, and 9.16 In this nonstandard system,

(15937)–10 = 7 + 3(–10) + 9(–10)2 + 5(–10)3 + (–10)4

= (5877)10.
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FIGURE 10.  Benjamin  Peirce’s  ‘Improved’  Binary  Notation 
(column  C)  Compared  with  Leibniz’s  (column  D).  Column  8 
shows Peirce’s proposed nomenclature.
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He patiently investigated the four fundamental operations as well 
as  extraction  of  square  and  cube  roots  in  this  system.  He 
discussed at length how to find (–N) given (+N) and presented 
numerous humble results such as (N)3 + (–N)3 = (N)3 – (N)3   = 0 
and that division by (–10)3 would have the effect of moving the 
fraction marker three places toward the left.

A series of  miscellaneous publications  appearing during the 
last quarter of the nineteenth century will  now be discussed in 
chronological order.

BENJAMIN PEIRCE (1876)

The  1876  United  States  Coast  Survey  Report included  as 
Appendix  6,  Benjamin  Peirce’s  “A  New  System  of  Binary 
Arithmetic.”  Peirce  considered  his  system of  dots  and  vertical 
dashes  more  economical  of  space  and  a  distinct  improvement 
over Leibniz’s version of the binary system. He chided Leibniz 
for  not  having  provided  any  system  of  nomenclature  and 
proceeded  to  remedy  this  defect.  Figure  10  shows  Peirce’s 
notation  and  nomenclature  for  the  first  16  whole  numbers. 
Additional  nomenclature  included  special  names  for  each 
quadrate  (group  of  4  binary  digits),  namely  units,  ties,  tries, 
quads,  quints,  sies,  septs,  and  octs.  His  grouping  into  fours 
suggests ready interpretation as binary-coded base 16.

Benjamin  Peirce  was  a  highly  regarded  American 
mathematician  who  held  a  professorship  at  Harvard.  His  son, 
Charles,  also worked with binary expressions,  which he called 
“secundals.”  Charles’  work was only  in  manuscript  form until 
1976, when Carolyn Eisele published it.

G. BELLAVITIS (1877)

Bellavitis  reduced  long  binary  strings  by  indicating  the 
numbers of “0”s and “1”s that appeared in succession.17 Thus, the 
repeating  binary  fraction  1/13  =  0.0001  0011  1011...  was 
indicated  by  312312,  which  was further  shortened  in  his  final 
table  to  312,  since  the  second  half  of  the  period  could  be 
predicted
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from the first. According to Dickson, “G. Bellavitis noted that the 
use  of  base  2  renders  much  more  compact  and  convenient 
Gauss’s table and hence constructed such a table.”18 The Gauss 
table  in  question  is  Table  3  of  Disquisitiones  Arithmeticae (a 
more  extended  version  was  published  posthumously),  which 
gives the decimal periods of fractions of the type 1/p, where p is 
prime.

LLOYD TANNER (1878) 

Tanner reported on numbers N whose n β-adic digits form the tail 
end of the β-adic string of N2, that is, numbers N which satisfy 

N2 – N  = Kβn

for some positive integer K.19 He determined that for  β = 6, 10, 
and 12 there exist only two such N each, namely

N = 3221350213 and N = 3334205344 for base 6
N = 8212890625 and N = 1787109376 for base 10
N = 21B61B3854 and N = 9A05A08369 for base 12

where A and B represent 9 + 1 and 9 + 2 respectively.

FRANZ HOCEVAR

According to Dickson, Hocevar noted that N = 104533 or N = 
(11001100001010101)2 is divisible by 17 since 0101 + 1000 –
1001 + 1 = 0, or more generally, that if N is written to the base β 
and then separated into groups (starting from the right) G0,  G1, 
G2, ... each of q digits, then N is divisible by γ + 1 (where γ = βq) 
if G0 + G1 + G2 + ... is divisible by γ + 1.20 This is not startling if 
one notes that the grouping has the effect of rewriting N to the 
base  γ, and that the Gi’s are the base  γ digits of N. The insight 
involved was already displayed by Legendre, who had interpreted 
a base 2 string as a “base 2 coded base 64” string (see Theorem 
4.7). After such interpretation
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the usual divisibility rule (for divisibility by γ + 1) applies.

BROCKHAUS (1883)

The 1883 or 13th edition of Brockhaus Conversations-Lexicon 
carried under “Dyadik” a brief description of the binary system. 
This is not noteworthy in itself, since many earlier encyclopaedias 
in English, French, and German had done the same.  Brockhaus 
seems, however, to be the first  publication of any type to take 
notice of the fact that Bishop Juan Caramuel had published on the 
binary system some 30 years before Leibniz.

CHARLES BERDELLÉ (1887)

Charles Berdellé proposed the eight symbols shown below as the 
eight octal digits:21

Obviously, Berdellé’s octal digits are but thinly disguised 3-bit 
binary strings. Berdellé declared that it was easy to make the two 
systems  (binary  and  octal)  one  and  the  same.  This  amounts 
simply to the Legendre-Hocevar insight that a binary string is at 
once a binary-coded octal string. Berdellé also proposed a system 
of nomenclature for his octal system.

OSKAR SIMONY (1887)

Simony reported that he found binary notation more suitable 
than  decimal—at  least  for  certain  purposes—in his  topological 
investigation  of  knots.”  In  this  connection  Simony  reviewed 
Caramuel’s and Leibniz’s work on the binary system, including 
the binary interpretations of the Figures of Fohy.
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EDOUARD LUCAS (1891)

According to Dickson, Edouard Lucas used binary notation to 
prove 231 – 1 prime.23 His 1891 Théorie des nombres continued a 
tradition  started  by  Barlow’s  1811  book  giving  numeration 
systems  a  definite  place  in  books  on  the  theory  of  numbers. 
Lucas’s 1891  Recreations mathématique has already been cited 
for a probably false reference to Simon Stevin as a duodecimal 
advocate.  On  the  topic  of  numeration  systems,  the  two  Lucas 
books together offered little beyond Barlow’s 1811 book.

HERMANN SCHEFFLER (1891)

Scheffler  made  some  contributions  to  the  factorization  of 
numbers of the type 2n + 1 by writing possible factors in binary 
notation.

GEORG CANTOR (1895)

In  1895 Georg  Cantor  (the  set  theorist,  not  Moritz  Cantor  the 
mathematical historian) published a proof of

c = 2ℵo

based on the fact that c is the cardinal number of the continuum as 
well as the interval (0,1), and that every number x in that interval 
can be expressed in the form

x =
f 1 

21 
f 2 

22 
f 3

23  ... 
f v 

2v

where f(v) is either 0 or 1. The cardinal number associated with 
the  set  of  positive  integers  is .oא   The  form of  x  shown is,  of 
course, expanded binary notation.
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F. J. STUDNICKA (1896)

Studnicka reported that the property displayed by

9  8  7  6  5  4  3  2  1
– 1  2  3  4  5  6  7  8  9

8  6  4  1  9  7  5  3  2 ,

where every nonzero decimal digit is represented in each of the 
three lines in a predictable order, can be generalized to other  β-
adic systems, where β is even.24

Studnicka gave as examples: 

3 2 1
–1 2 3 for base 4

1 3 2 

5 4 3 2 1
–1 2 3 4 5 for base 6

4 1 5 3 2 

7 6 5 4 3 2 1
–1 2 3 4 5 6 7 for base 8 

6 4 1 7 5 3 2

B A 9 8 7 6 5  4 3 2  1
–1  2  3 4 5 6 7  8 9 A B for base 12 

A 8  6 4 1 B 9 7 5  3 2

He believed that through open display and proof of the property 
in  question,  the  opportunity  offered  itself  to  acquaint  students 
with different numeration systems.

ROBERT M. PIERCE (1898)

Pierce  published  an  essay  in  which  he  proposed  that 
mathematicians and others be polled to ascertain the best possible 
base; serious steps should then be taken to replace base 10 by that 
best one.25
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GIUSEPPE PEANO (1899)

In  1899  Giuseppe  Peano  (the  very Peano  after  whom  the 
Peano Axioms are named) published an article proposing a new 
system  of  stenography  that  had  the  binary  system  as  its 
foundation. Apparently he preferred “.” and “:” for “0” and “1” 
respectively and showed the first few positive integers as follows:

This  article  has  been  cited  earlier  in  connection  with  Peano’s 
insistence that  Lamarck’s  and  Ampère’s  classification schemes 
represented applications of the binary system. Peano wrote:

A keyboard machine that writes a syllable at a time is that of 
Michela and is in use in our Senate. It uses the [1023 possible] 
combinations  of  10  keys,  associating  a  numerical  value  with 
each  combination.  A  technical  commission  appointed  by  the 
Senate (January 30, 1880) and the Chamber of Deputies declared 
that with this machine “they were able to handle satisfactorily 
the  ordinary  stenographic  transcriptions  with  respect  to  both 
speed and accuracy.”

Now the  [proposed]  binary  writing  is  notably  simpler  and 
faster than that of Michela’s machine. Using both hands, . . . , 
one can write with a  single  stroke 16 binary symbols,  or two 
syllables—forming 65,536 combinations.

The above-mentioned binary writing needs the knowledge of 
a special alphabet, which is not more difficult to learn than the 
alphabet  of  any  people,  or  the  stenographic  alphabet,  or  the 
location of a drawer in a stenographic box. It is especially simple 
to  learn  since  the  symbols  are  constructed  on  the  basis  of  a 
general principle.

It  has  all  the advantages for  reading and ordinary writing. 
Using a small, quite simple machine, one can write with a speed 
which is superior to the speed of ordinary stenography. It can be 
sent by wire, utilizing all the potential of the telegraphic wire, 
things that the machines of Baudot and Ostrogowich do not do 
completely yet. And if some of the preceding applications will be 
of common use, I shall show how it can be printed with ordinary 
printing  presses.  These  and  other  advantages  derive  from the 
pure application of binary numeration.26

104



Peano  introduced  a  symbol  that  may  be  described  as  an 
octagonal star or an 8-petal daisy. Each petal present represents 
“1”,  or  when  absent  “0”,  thus  setting  up  a  one-to-one 
correspondence between the 28 8-bit  strings and the 28 daisies. 
Thus, for example,

The  petals  on  each  daisy  are  numbered  counterclockwise 
starting from the southeast petal (whose place value is 20) to the 
south petal (27).

The daisies would be typed two daisies at a time with Peano’s 
proposed stenographic  machine.  Since most  typists  have fewer 
than 16 fingers,  presumably the  keys  are  so arranged that  one 
finger could strike more than one key simultaneously. While each 
daisy  was  to  represent  an  Italian syllable,  Peano  thought  that 
appropriate assignments could readily be made in other languages 
also.  Twenty-five  of  the  28 or  256  daisies  were  also  assigned 
letters of the alphabet and ten of them were to represent the ten 
decimal digits. Peano’s list of these 35 assignments showed only 
letters and digits together with their associated daisies. In Figure 
11,  however,  the  daisies  are  omitted  in  favor  of  their  binary, 
hexadecimal, and decimal equivalents.

Before Peano introduced his daisies in this article, he pointed 
out that the International Morse Code (which assigns 5 symbols 
to each decimal digit) would require 14,445 symbols to transmit 
all numbers from 1 to 999. However the binary system of Os and 
1s could do the same job with only 8977 symbols. These figures 
seem somewhat irrelevant since he then assigned an 8-bit daisy to 
each decimal digit.

A minor difficulty with Peano’s daisies is that one cannot
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FIGURE 11. Numeric  Values  (in  Binary,  Hexadecimal,  and 
Decimal)  Assigned  to  25 Letters  of  the  Alphabet  and the  Ten 
Decimal Digits by Peano.
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distinguish the (0000 0000) daisy from the complete absence of a 
daisy.  While  an  obvious  pattern  emerges  in  the  assignment  of 
daisies to decimal digits,  no readily discernible pattern appears 
among  the  assignments  for  the  25  letters.  No  justification  is 
apparent as to why five of the letters should have to share their 
daisies with digits.

A second publication of Peano’s dealing with this topic is his 
monumental Formulaire de mathématiques (in French, published 
in 1901). Pages 75–78 of Tome 3 are devoted to both ancient and 
modern  systems  of  numeration.  Here  the  daisies  are  again 
explained and the example

1900 = (0000 0111) (01101100)

is given to show that two daisies would suffice to represent 1900. 
By his earlier scheme, displayed in Figure 11, 1900 would have 
required 4 daisies, i.e.,

1900 = (0000 0001)(0000 1001)(0000 1010)(0000 1010).

In  repeating some of  the  assignments  of  binary symbols  to 
letters of the alphabet, Peano now dispensed with the daisies, and 
indicated the assignments as shown by the following examples: 

....  !... = A
!...  .... = F
....  ...! = M
!!!. .... = K

Fourteen such assignments are given, all of them consistent with 
those indicated in Figure 11 except F and K. His use of “!” for 
“1” is also new.

While giving the histories of the numbers e and  n (on pages 
154 and 177 respectively) Peano indicated that

e =  (10.10110111 11100001 01010001 ...)2 and
π = (11.00100100 00111111 01101010 ...)2 .
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ALFRED B. TAYLOR (1887)

Discussions on “which base is best” continued throughout the 
last quarter of the nineteenth century. The most comprehensive of 
these was a 70-page paper read by Alfred B. Taylor before the 
American Philosophical Society on October 21, 1887.27 The paper 
was  in  part  a  plea  to  reject  the  decimalized  metric  system 
considered  by  Taylor  to  be  beautiful,  but  of  no  use  to  the 
tradesman or  businessman.  He raised the question whether  the 
well-nigh  universal  decimal  numeration  was  really  natural.  He 
decided it was natural in the same sense that ignorance was. He 
came to the conclusion that the “octonary” (base 8) scale would 
be the best possible one. 

WILLIAM WOOLSEY JOHNSON (1891) 

Johnson came to the same conclusion in his article published 
in  the  immediate  predecessor  of  the  Bulletin  of  the  American 
Mathematical Society.28 He stated:

Now it is to be noticed that if the radix is a power of two, we 
have  virtually  all  the  advantages  of  the  binary  system.  For 
example, if we have a number expressed in the octonary system, 
we have only to substitute for the characters 0, 1, 2, ..., 7 their 
binary equivalents 000, 001, 010, ..., 111 to obtain the number in 
the binary system.

The digital  expression of a number in the octonary system 
would  be  much  more  suggestive  of  its  intrinsic  nature  than 
expression in any non-binary system, for the highest power of 
two  contained  as  a  factor  in  a  number  is  its  most  important 
characteristic.  Again  the  distinction  between  numbers  of  the 
form 4n + 1 and those of the form 4n + 3 is of great importance 
in the theory of numbers, and in the octonary system it would be 
obvious at a glance to which of these classes a given uneven 
number belongs.  So also with the distinction between “evenly 
even” and “unevenly even” numbers. It is interesting also to note 
that  the  square  of  every  uneven  number  would  end  in  1,  the 
preceding  figures  expressing  a  triangular  number.  Thus  the 
uneven squares in octonary notation are 1, 11, 31, 61, 101, . . . 
As there is no doubt that our ancestors originated the
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decimal  system by  counting  on  their  fingers,  we  must,  in 
view of the merits of the octonary system, feel profound regret 
that they should have perversely counted their thumbs, although 
nature had differentiated them from the fingers sufficiently, she 
might have thought, to save the race from this error.”

E. GELIN (1896)

Gelin also considered base 8 the best.29 He favored 8 over 10 
and 12, for example,  since the successive powers of  8 contain 
more  divisors  (proportional  to  their  value),  than  do  the  same 
powers of 10 or 12. He pointed out that 8n, 10n, and 12n, have, 
respectively,

3n + 1, n2 + 2n + 1, 2n2 + 3n + 1

divisors and that the following inequalities hold:

3n  1
n2  2n  1

  >  8n

10n

3n  1
2n2  3n  1

 >  8n

12n

T. N. THIELE (1889)

Thiele favored base 4.30 He gave the usual reasons for wanting 
a base that is a power of 2. His choice of 4 over other powers of 
two rested on pedagogical considerations. First he analyzed the 
number of “results” pupils would need to memorize for various 
bases. For base 4, for example, out of the usual 16 multiplication 
facts, he considered only the following 3 as nontrivial: 2·2 = 10, 2 
·3  =  12,  and 3·3  =  21.  Base 2,  by  Thiele’s  reasoning,  has  no 
nontrivial  multiplication  facts  at  all.  In  general,  base  β has, 
respectively,

β β − 1
2

  and  
β− 1 β− 2

2

nontrivial addition and multiplication facts. By these formulae,
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bases 2, 4, 6, 10 and 16 involve, respectively, 1, 9, 25, 81, and 
225  “results”  (nontrivial  addition  and  multiplication  facts).  By 
replacing base 10 by 4 for common use, even the dullest students 
could memorize the 9 results involved. The brighter ones could 
extend the addition and multiplication tables to, say 13 + 13 = 32 
and 13·13 = 301 (tantamount to working in base 8). Still brighter 
students could make the extensions tantamount to working in base 
16 or even 32. Thus argued Thiele every student could pick that 
base best suited to his or her talents and needs.

HERBERT SPENCER (1896)

The English philosopher Herbert Spencer came out in favor of 
base  12  for  common  use  in  a  passionate  plea  against  British 
adoption  of  the  decimalized  metric  system.  The  gist  of  his 
argument echoes through his last paragraph:

See,  then,  the  strange  position.  The  vast  majority  of  our 
population  consists  of  working  people,  people  of  narrow 
incomes and the minor shopkeepers who minister to their wants. 
And these  wants  daily  lead  to  myriads  of  purchases  of  small 
quantities  for  small  sums,  involving  fractional  divisions  of 
measures  and  money—measuring  transactions  probably  fifty 
times  as  numerous  as  those  of  the  men  of  science  and  the 
wholesale  traders  put  together.  These  two  small  classes, 
however,  unfamiliar  with  retail  measuring  transactions,  have 
decided that they will be better carried on by the metric system 
than by the existing system. Those who have no experimental 
knowledge of the matter  propose to  regulate  those who have! 
The methods followed by the experienced are to be rearranged 
by the inexperienced!31

EDWARD BROOKS (1876)

Brooks  devoted  pages  113–134  of  his  The  Philosophy  of  
Arithmetic to  a  discussion  of  numeration  systems.  He  made  a 
strong plea for replacing the decimal system by the duodecimal 
for common use.
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Neither  the  pleas  of  those  who wanted  the  decimal  system 
replaced for common use, nor of those who wanted schools to 
take up the topic of nondecimal numeration regardless of which 
base was in common use, seemed to have had any appreciable 
effect on the content of the school texts of the last quarter of the 
nineteenth century.

SCHOOL TEXTS (1875-1899) 

Of course, the later  editions of  the Sonnenschein arithmetic 
previously mentioned continued to carry some exercises dealing 
with nondecimal numeration, as might be expected of the author, 
who has been identified as  a  pupil  of  DeMorgan.  The  Higher 
Algebra of  Hall  and  Knight  has  already  been  mentioned  in  a 
quotation by W. W. Sawyer as an English text that covered this 
topic. The great majority of school texts in arithmetic and algebra 
restricted their discussion of “numeration” to decimal numeration. 
From  the  Müller  report,  it  may  well  be  assumed  that  some 
individual teachers included nondecimal numeration, at least as a 
by-product of certain other discussions in mathematics.
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· VI ·
THE TWENTIETH CENTURY UP TO

THE COMPUTER AGE

MORITZ CANTOR (1901)

The publications dealing with numeration systems that have 
already  been  reviewed  did  not  loom large  in  Moritz  Cantor’s 
eyes.  His  monumental  1901,  4-volume work  on the  history of 
mathematics found room for only minor comments, such as have 
already been cited in the assessments of Caramuel and Weigel. 
Indeed, aside from these comments, only Leibniz’s dyadics seems 
to  have  found  some  room  in  this  work.  At  the  beginning  of 
Chapter 97—which deals with series—Cantor stated:

We will permit ourselves, at this opportunity, to mention a 
few investigations, for which it is doubtful that they have a right 
to be treated here, but which fit less well anyplace else.1

Cantor then proceeded to mention Leibniz’s dyadics.
Thus, up to 1900, the topic of binary and other nondecimal 

numeration  had  neither  blossomed  into  great  significance  nor 
withered away entirely, and this continued to be the story for the 
first  half  of  the  twentieth  century,  when  a  minor,  continued 
interest kept the topic alive—especially in the area of recreational 
mathematics.

BINARY NUMERATION APPLIED TO THE GAME OF NIM

Leibniz  had  encouraged  analysis  of  the  columns  created  by 
making  vertical  lists  of  some  type  of  number,  say  squares  or 
cubes, in binary notation—in search for columnar periods. The 
only advantage in knowing such periods ever pointed out
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by Leibniz or any of his contemporaries was the greater ease with 
which one could quickly write such lists on subsequent occasions. 
After Dangicourt’s 1710 article, which had carried this fruitless 
analysis  to  boring  extremes,  no  other  writer  seemed  to  have 
bothered. Charles L. Bouton (1901–1902) gave columnar analysis 
a  new  twist,  however.2 He  was  not  concerned  with  columnar 
periods—his  lists  were  too  short  for  that—but  he  found some 
significance in columnar sums.

The significance of these columnar sums is connected with a 
game  which  Bouton  called  NIM.  The  game  is  played  by  two 
players P and Q who take turns removing matches from a table; 
the winner is the one who removes the last match. At the outset, 
the  table  contains  an  arbitrary  number  of  piles  and  each  pile 
contains an arbitrary number of matches. At each turn, a player 
chooses a single pile from which to remove one or more (possibly 
all)  matches.  If  at  the  completion  of  P’s  turn,  the  number  of 
matches are a, b, c ... in piles A, B, C ..., and the numbers a, b, c, 
...  are  listed  vertically  in  binary  notation,  then  player  P  has  a 
winning position, according to one of Bouton’s theorems, if, and 
only if, each columnar sum of that list is an even number.

Among the lists shown below, II, IV, VI, VIII, and X indicate 
winning positions:

In fact, these ten lists represent a sample game of NIM, won by P. 
List I is the position at the outset, there being four piles A, B, C, 
and  D  having  respectively  2,  3,  6,  and  15  matches.  Player  P 
started by removing 8 matches from D, thus creating the winning 
position shown in II, where every columnar sum is even. None of 
the choices open to player Q could now have created a winning 
position. Q chose to remove the remaining
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7 matches from D. Now P removed 5 matches from C, leaving the 
winning position IV and so on.

Other  writers  dealt  with  this  topic  subsequently.  W.  A. 
Wythoff (1907) proposed a modification of NIM limited to two 
piles.3 The  accompanying  mathematical  theory,  surprisingly, 
involved the greatest integer function and the expression ½(V 5 + 
1).

E. H. Moore (1910) proposed a modification, which permitted 
each player to remove matches from k piles.4 He showed that this 
modification also had a complete mathematical theory.

R. Sprague (1935-36) saw Bouton’s NIM as a special case of a 
more generalized NIM whose theory he presented.5

E. U. Condon (1942) described a machine, the NIMATRON, 
“which is very skillful at playing the game of NIM.”6

D. P, McIntyre (1942) presented a new mathematical theory of 
NIM based on the base 4 representation of numbers.7

H. D. Grossman (1945) showed that a mathematical theory is 
also possible when NIM is modified so that the object is to make 
one’s opponent finish with an odd or even total.8

L.  S.  Recht  (1943)  generalized  McIntyre’s  treatment  by 
showing a proof based on number representations to the base 2q.9

Raymond  Redheffer  (1948)  described  a  new  machine  for 
playing NIM that is an improvement over Condon’s.10 He noted 
that the theory of the game did not really require knowledge of 
the sums of columns, but only whether such sums were odd or 
even. The circuits for his machine were simplified accordingly. 

Cedric Smith (1968) treated NIM as a special case of a more 
generalized game.11

Three books (as distinct from the journal articles reviewed up 
to now), each in English and widely available, can be especially 
recommended for  their  accounts  of  the  game of  NIM and the 
relevant  mathematical  theory—at  least  up  to  Bouton’s  work. 
These books are by G. H. Hardy, J. V. Uspensky, and W. W. R. 
Ball.12
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THE ROLE OF NUMERATION SYSTEMS IN
BOOKS ON RECREATIONAL MATHEMATICS AND

BOOKS ON THE THEORY OF NUMBERS

The  first  edition  of  Wilhelm  Ahrens’  book  on  recreational 
mathematics  appeared  in  1901 and  was  followed  by  a  second 
edition  in  1910.  Each contained a  long  chapter  on  numeration 
systems. The earlier one mistakenly referred to Simon Stevin and 
Charles  XII  of  Sweden as  duodecimal  advocates,  but  the  later 
edition retracted these references. The chapter in the 1910 edition 
was entitled “Numerationsysteme,” and covered pages 24–104. It 
easily  represented  the  most  comprehensive  treatment  of 
numeration systems and their applications up to that time.

Ahrens  gave  concise  historical  sketches,  provided  flawless 
bibliographic references, and gave careful proofs of theorems. He 
gave  credit  to  Lucas  for  applying  numeration  systems  to  the 
games of The Tower of Hanoi and the Chinese Rings.

Paul  Bachman’s  book  (1902)  on  the  theory  of  numbers 
discussed  briefly  the  representation  of  numbers  in  various 
“numeral systems” (Ziffernsystemen).13 It mentioned that

(1012032)7 = (120759)10

and that a base β representation is possible for every number and 
every base  β. He pointed out that the powers of 3 are the only 
ones that can be used in conjunction with the coefficients –1, 0, 
+1 to represent every number uniquely. Bachman did not include 
any  applications,  such  as  the  Guess  the  Number  Cards  or 
Weighing Problems.

The Hardy book, already mentioned as a good reference on the 
game  of  NIM,  followed  the  Barlow  tradition  more  clearly. 
Chapter  IX,  “The  Representation  of  Numbers  by  Decimals,” 
includes all of Barlow’s 1811 treatment in concise form, plus a 
thorough  treatment  of  fractional  numbers  and  their  β-adic 
representations as well as the game of NIM. Hardy’s use of the 
word  “decimal”  requires  some  comment.  Hardy  referred  to 
(0.001)2 as a “‘binary’ decimal” and to (0.444b...)7 as a “decimal in 
the scale of 7.” In a footnote, however, he commented:
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“We  ignore  the  verbal  contradiction  involved  in  the  use  of 
‘decimal’; there is no other convenient word.” Hardy’s Theorem 
136, quoted below, further illustrates his use of ‘decimal.’

Suppose that r is a prime or a product of different primes. 
Then any positive number ζ may be represented uniquely as a 
decimal  in  the  scale  of  r.  An  infinity  of  the  digits  of  the 
decimal  are  less  than  r  –  1;  with  this  reservation,  the 
correspondence  between  the  numbers  and  the  decimals  is 
(1,1).14

Few  other  writers  seem  to  have  decided  on  this  usage  of 
‘decimal.’ One of them was Don Pedoe, who referred to 101 (the 
binary equivalent of 5) as a “binary decimal.”15

Edmund  Landau’s  book  (1927)  on  the  theory  of  numbers 
omitted the topic of numeration systems altogether.16

Uspensky’s book has already been cited as a good reference 
on NIM. Aside from this, numeration systems are covered much 
less thoroughly than in Hardy.

The 1938 Ball & Coxeter edition of Mathematical Recreations 
and Essays does not treat numeration systems as comprehensively 
as does Ahrens, nor is everything on this topic collected into a 
single  section  or  chapter.  However,  its  treatment  of  several 
subtopics,  such  as  NIM  and  the  weighing  problems,  is  more 
extensive than Hardy’s. This makes Ball  &  Coxeter one of the 
best  precomputer  age references  on numeration systems in  the 
English language.

MISCELLANEOUS PUBLICATIONS ON NUMERATION SYSTEMS

John  Tennant  (1901)  described  how he  could  facilitate  the 
search for factors in high numbers N by representing them in the 
form N = a(9002) + b(900) + c, that is, in base 900.17

Adam Wizel  (1904)  reported  the  case  of  an  imbecile  with 
unusual computational talent that involved use of base 16.18 When 
asked how many buttons were in her collection of 104 buttons, 
the imbecile would answer “6 times 16 and 8 more.” Wizel found 
other  evidence  that  the  imbecile’s  computational  work  was 
oriented around grouping in 16s.

119



Allan Cunningham (1908) investigated “binal fractions,” the 
name  he  gave  to  reciprocals  of  (1/n)  of  any  number  n,  when 
“expressed in the binary scale.”19 He noted that

1/2 = .1
1/(22) = .01
1/(23) = .001

and in general that

1/(2n) = .000...01

with (a – 1) zeros before the terminal 1. He noted further that if n 
is odd, then the ‘binal’ of 1/n would consist solely of a repeating 
cycle, as for example,

1/3 = .01010b1b... .

If, on the other hand, n were even (other than a power of 2) then 
the repeating cycle in the binal of 1/n would be preceeded by a 
group of zeros, as in

1/6 = .00101010b1b...
or 1/12 = .000101010b1b... .

One might expect this from the fact that 1/6 = (1/2)(1/3) or, in 
binals,  1/6  =  (.1)(.01010b1b...)  and  similarly,  1/12  =  (1/4)  (1/3). 
Hence Cunningham decided to restrict his tables of binals of 1/n 
to those n that are odd.

Joseph  Bowden  (1912)  proved  the  validity  of  the  ancient 
Russian peasant method of multiplication, which he showed to be 
an application of the binary system.20

G.  H.  Cooper  (1920)  urged  that  “the  government  should 
appoint a commission to test the octonary, or any other system, 
and give the world that one which proves itself to be universally 
and conveniently adapted to the needs of mechanical science and 
trade.”21

Alfred Watkins (1920) urged adoption of the octal system at 
least  for  fractional  numbers,  and  designed  an  “octaval”  ruler, 
simple  calipers,  simple  vernier  calipers,  and  double  vernier 
calipers that show octal divisions of the inch.22

120



Louis-Gustave  Dupasquier  (1921)  thoroughly  discussed 
“which base is best,” and concluded that from the point of view of 
divisibility properties some multiple of 6 would make the best 
base.23 From various points of view, however, base 4 had the most 
advantages.

E.  M.  Tingley  (1934)  expressed  strong feelings  against  the 
decimal system and against more complete adoption of the metric 
system. He chided psychologists for not joining his crusade. He 
stated:  “Psychologists,  that  vast  influential  and  international 
group, students of the mind, should assert in their authority that 
eight  is  the  best  base  for  arithmetic.”24 On  this,  E.  William 
Phillips (1936) wrote:

1. The development of this paper involves the consideration 
of  certain  arithmetical,  mechanical,  and  photo-electrical 
technicalities, but the ultimate aim is a very simple one and it 
may therefore be advisable to state it at once. The ultimate aim is 
to  persuade  the  whole  civilized  world  to  abandon  decimal 
numeration  and  to  use  octonal  numeration  in  its  place;  to 
discontinue counting in tens and to count in eights instead.

2. However, it seems unlikely that the whole civilized world 
will be persuaded to complete this change during the next twelve 
months,  having  previously  declined  similar  invitations. 
Therefore the  more  immediate  aim is  the adoption of  octonal 
numeration for  scientific  and business  purposes,  for  the  great 
mass of figures recorded and manipulated for the benefit only of 
the scientific and business man, the few final results required for 
presentation to  the  layman being  transformed into  the  denary 
scale  of  notation  from  the  octonary  by  means  of  conversion 
tables, or otherwise.25

Joseph Bowden published his  Special Topics in Theoretical  
Arithmetic in 1936. (A journal article of Bowden’s has already 
been mentioned for 1912). In his new book he devoted pages 17–
81 to “Scales of Notation.” He wished to abolish the “tyranny of 
ten” and have, among other things, a 16-hour day.

A.  J.  Kempner  (1936)  investigated  certain  nonstandard 
numeration systems, because a student of his had asked whether 
the irrational number e could be used as the base of a numeration 
system. He answered in the affirmative, by proving
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Theorem  6.0:  Every  real  number  can  be  represented 
canonically to any base  β, where  β is any real number greater  
than 1, and this representation is unique.

For β = 3/2, for example,

2 = (10.01000001...)3/2 (can)
2 = (  0.111...  )3/2 

Only  the  former  is  called  canonical, since  it  satisfies  the 
following definition.

The right side of

(6. 1) N = (DnDn -1...D0D-1D-2...)β

is called the canonical base β representation of N if

(i) each digit D; is a nonnegative integer less than β
(ii) βn ≤ N < βn+1

(iii) the digits Di are chosen in the order i = n, n – 1, ... and 
each digit is the highest choice possible up to that point.

If β lies in the interval (1,2), then only the two digits 0 and 1 
are required, as was shown for β = 3/2. By Kempner’s definition, 
if (in 6.1)) D-1 = D-2 = ... = 0, then N is represented as a whole 
number to the base p. The base 3/2 representations (canonical and 
otherwise) already shown, reveal that the integer 2 does not have 
a ‘whole number’ representation in that base and the fact that

5/2 = (11)3/2

brings forth that a ‘whole number’ need not represent an integer. 
In Kempner’s words: 

On  account  of  these  properties,  the  notion  of  a  ‘whole 
number’ cannot be fundamental in such number systems, since it 
possesses no closure properties. However, it was obvious from 
the start that only the representation of the individual number in 
the system, and the abstract structure of the system, can interest 
us, not its use for arithmetic.26
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Among  the  many  other  results  proved  or  indicated  by 
Kempner are the following:

Theorem 6.2: If β = 3/2, the canonical representations exclude 
the sequence 11, the sequence 101 is followed by at least 5 zeros,  
and every infinite representation has a preponderance of 0’s—the 
ratio of 1’s to 0’s being at most 1/2.

Theorem 6.3: If β is not integral, an unending repetition of the  
greatest  digit, [β],  cannot  occur  in  the  base  β canonical  
representation.

Theorem  6.4:  No  irrational  number  can  be  periodic  to  a 
rational base β, canonical or otherwise.

Theorem 6.5:  If  β = 51/2 the canonical representation cannot  
have the sequences  22 or 21;  the following sequences of three  
digits are also excluded: 222, 221, 220, 212, 211, 210, 202, 122. 

As an example of a canonical representation to an irrational 
base, Kempner gave the example

1/2 = (0.100101...)β,

where β = 51/2. He arrived at this through the following steps:

1/2 = 1·5–1/2 + (1/2 – 5–1/2 )

= 1·5–1/2 + 0·5–1 + (1/2 – 5–1/2 )

= 1·5–1/2 + 0·5–1 + 0·5–3/2 + (1/2 – 5–1/2 )

= 1·5–1/2 + 0·5–1 + 0·5–3/2 + 1·5–1/2 + (23/50 – 5–1/2 )

= 1·5–1/2 + 0·5–1 + 0·5–3/2 + 1·5–1/2 + 0·5–5/2 + 1·5–3 + ...

= (100101...)β, where β = 5 .

In a footnote,  Kempner indicated that  0 and 1 were clearly 
excluded as possible bases, but positive numbers less than 1 and 
negative numbers could be used with slight modifications of the 
processes  outlined  and  with  suitable  restrictions  on  the  set  of 
digits employed.

G. W. Wishard (1937) chided Taylor for having overlooked
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the beneficial ease with which base 8 may be converted to base 2, 
thus  making  available  the  additional  advantages  of  base  2.27 

Wishard gave an algebraic proof of the fact that a binary-coded 
octal string (created by substituting 000, 001, ..., 111 for 0, 1, ..., 7 
respectively)  is  at  once a pure binary string,  which,  of  course, 
amounts only to the old Legendre insight.

Abraham Fraenkel (1939) preferred bases 6 or 12 to 10 for the 
usual  reasons  (richness  in  divisors).  He  added  that  this  same 
principle  of  preference  has  resulted  in  24  hours  in  a  day,  60 
minutes in an hour, 360 degrees in a circle, and 1080 “parts” to an 
hour in the Jewish calendar.

From a purely scientific point of view, preference must be 
given to that number, among the infinite possibilities of choice 
for a base, which is absolutely distinguished from the rest as the 
smallest among them, namely, the number 2. As a matter of fact, 
in  so  far  as  positional  notation  is  employed  in  purely 
mathematical  investigations,  the  binary  scale...  is  sometimes 
chosen.28

J.  T.  Johnson  (1940),  of  the  Chicago  Teachers  College, 
reminded his readers of the difficulties still being experienced in 
trying  to  get  the  metric  system  fully  adopted  throughout  the 
world, and thought it futile for anyone to suggest the more far-
reaching reform of replacing 10 as the base of our arithmetic. He 
hoped for full adoption of the metric system in the United States, 
a reform “that no one can deny is in the interest in simplicity for 
education,  computation,  business  and  commerce.”  Johnson 
analyzed  Tingley’s  intemperate  advocacy  of  base  8  and 
concluded:

All the discussions on number systems besides our own 
have their value, the chief one of these is a development of a 
mathematical appreciation which is so much underrated and 
neglected  at  the  present  time.  Another  value  in  these 
discussions  lies  in  the  material  they  furnish  for  the 
imagination. When we realize that more than one half of the 
English books that are written and read are fiction rather than 
fact, there ought to be no objection to more books like  New 
Numbers by
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Mr. Andrews. They belong to mathematical fiction and should 
have a place in mathematical literature.29

Richard Courant (1941) included an exercise on page 9 of his 
What is Mathematics. The exercise, in effect, asked his readers to 
work out a table like Hankel’s (see chapter 5), showing base 4 to 
be  ‘best’,  because  it  requires  the  least  number  of  concepts  or 
names.

Duncan Harkin (1941) gave a justification for  the ‘repeated 
division  by 2’  method of  finding  binary equivalents  of  N that 
seems unusually well suited to his intended readership.30 He also 
gave  most  of  the  ‘recreational’  applications  of  nondecimal 
numeration  (NIM,  weighing  problems,  peasant  multiplication), 
and may be forgiven a hopelessly distorted reference to Lagny’s 
work.

Harold Larsen (1944) reported that if the base be taken as 1 + 
i, where i is a positive number less than unity, and where 0 and 1 
are  the  only  permissible  digits,  then  one  could  see  some 
interesting  relationships  to  the  mathematics  of  finance.31 He 
indicated  that  circulating  ‘decimals’  in  the  scale  of  1  +  i  are 
connected  with  the  theory  of  perpetuities  and  that  certain 
logarithms  could  then  be  identified  with  the  sinking  fund  and 
amortization schedules.

J.  Ser  (1944)  proposed  a  nonstandard  numeration  system 
whose  digit  strings  would  readily  expose  the  divisibility 
properties of N with respect to certain prime moduli.32 Thus, for 
example, 

24 = 0043 (ser-base 210)

and the 4-digit string 0043 would mean that 24 is a multiple of 2 
and 3, and exceeds a multiple of 5 by 4, and a multiple of 7 by 3. 
The prime factorization of 210 being 2·3·5·7 would indicate that 
the primes 2, 3, 5, and 7 are being considered in turn. Similarly,

174 = 0046 (ser-base 210)

because 174 exceeds multiples of 2, 3, 5, and 7 by 0, 0, 4, and 6 
respectively. Since 30 has only the prime factors 2, 3, and 5, it 
follows that
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24 = 004 (ser-base 30)

L. R. Posey (1946) reminded his readers that the formula

loga N =
logb N
logb a

intended  for  a  change  of  base  in  logarithms,  is  intimately 
connected with changes in base in our numeration system.33

DUODECIMAL ADVOCATES (1900–1946)

Scientific American reported in 1902:

The  American  Society  of  Mechanical  Engineers  has 
apparently  not  yet  given  up  the  idea  of  combating  the 
introduction of the metric system into the United States. As a 
kind of compromise between the existing system and the metric 
system, Prof. S. S. Reeve recently proposed before the Society a 
duodecimal system, which takes as its standard the English yard. 
Upon the yard a system is to be reared, exactly as a system has 
been  built  up  upon  the  meter.  The  divisions,  however,  are 
duodecimal to suit duodecimal numbers.

L. H. Vincent (1909) advocated that his readers take a good 
look at base 12, but admitted the hopelessness of ever replacing 
base 10.34

R. P. William (1909) came to the same conclusion as Vincent 
after giving an extensive historical overview for base 12.35

H. C. Christofferson (1924) also agreed, after his review of 
some of the advantages of base 12.36

F. Emerson Andrews (1934, 39, 44) wrote extensively on the 
advantages of base 12. In one of his works he stated:

The lowest number that has four factors is 12; the lowest that 
has six factors, two times 12; the lowest that has seven factors, 
three times 12; the lowest that has eight factors, four times 12; 
the lowest that has ten factors, five times 12; all the others that 
have the  maximum of  ten  factors,  excepting  only  90  are  six, 
seven, and eight times 12.37

In the end, his three publications offer only ‘richness in 
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divisors’ and ‘resulting simplicity of fractions’ as the advantages 
of base 12, although in considerable detail.

Wilimina Pitcher (1934) published a play intended for pupil 
use concerning a dozenland in which people had 12 fingers 
and used base 12.38

Luise Lange (1936) proposed a system of names to go with the 
duodecimal  system,  but  urged  her  readers  to  be  realistic  and 
forget about ever replacing base 10 for common use.39

James Johnston (1938) applied the Cauchy modification (see 
chapter 5) to the duodecimal system.40

George  Terry  (1938)  pointed  out  that  in  the  duodecimal 
system, all primes end in 1, 5, 7, or B and all squares in 0, 1, 4, or 
9.41

L. C. Janes (1944) echoed some of the advantages of base 12 
that had previously been pointed out and concluded:

In  closing this  discussion,  we  venture  to  suggest  that  if  a 
committee  were  ever  appointed  to  study  the  possibility  of  a 
uniform system of weights and measures to be used throughout 
the entire world with a view to the adoption of a system that 
would be nicely adaptable to decimal computation it might be 
well to investigate the possibilities of the duodecimal system.42

In  1944 the  Duodecimal  Society  of  America  announced its 
formation. According to its constitution the Society existed “to 
conduct  research  and  education  of  the  public  in  mathematical 
science,  with  particular  relation  to  the  use  of  Base  Twelve  in 
numeration,  mathematics,  weights  and  measures,  and  other 
branches of pure and applied science.”43 During 1980 this Society 
was renamed DOZENAL SOCIETY OF AMERICA. Its library 
and permanent headquarters is now located c/o Math Department, 
Nassau Community College, Garden City, NY 11530. 

NONDECIMAL NUMERATION IN TEXTBOOKS (1900–1946)

In 1925 Gordon Mirick and Vera Sanford reported that “like 
other interesting by-paths  in mathematics,  this  topic [Scales  of 
Notation] appears only rarely in text books.”44
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Among the three books they mentioned, only one was in English, 
namely:  Siceloff  and  Smith,  College  Algebra (Ginn,  1924:pp. 
239-246).

To this list might be added George Chrystal’s An Elementary 
Textbook of Algebra. The 5th edition of this  work appeared in 
1904  and  served  to  educate  several  generations  of  English 
mathematicians.  Chapter  IX  of  volume  I  is  headed  “Further 
Applications  to  the  Theory of Numbers—On Various Ways of 
Representing  Integral  and  Fractional  Numbers.”  Here  may  be 
found a rather thorough coverage of β-adic notation, including the 
Cauchy modification.  The more important divisibility theorems 
(such  as  by  β±l),  are  also  given,  but  applications  to  NIM and 
other recreational mathematics are not. The 43 problems on this 
topic exceed in variety and difficulty those found in most theory 
of number books. The reader is asked to prove, for example, that 
“In the scale of 11 every integer which is a perfect 5th power ends 
in one or other of the three digits 0, 1, a,” and “If in the scale of 
12  a  square  integer  (not  a  multiple  of  12)  ends  with  0,  the 
preceding digit is 3, and the cube of the square root ends with 
60.”

Chrystal’s work (p. 215, vol. I) also shows an application of 
the  binary  system to  the  finding  of  surds  of  the  type  p1/n that 
requires  1/n  be  written  in  binary  notation.45 The  procedure 
involves repeated square roots and is reminiscent of Legendre’s 
application of repeated squaring for finding  β”. Chrystal admits 
that this method, “although interesting in theory, would be very 
troublesome in practice.” A seventh edition of Chrystal appeared 
in 1964.

Published after Mirick and Sanford’s lament about the scarcity 
of  textbooks  that  cover  this  topic,  Herbert  Buchanan’s  book 
appeared with an appendix on “Scales of Notation.”46 Except for 
this  heading  the  treatment  might  have  been  lifted  from  a 
secondary school textbook of the 1960s. It included, for example, 
careful  use  of  expanded  notation  to  show  that  our  ordinary 
arithmetic deals with the “detached coefficients” of polynomials 
in 10.

Franklin Kokomoor’s book, intended for college freshmen,
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did not tuck this topic into an appendix, but smoothly integrated it 
in a discussion of number representations that included ancient 
numeration.47 Neither of these last two books went as deeply into 
the topic as Chrystal. Kokomoor’s and Chrystal’s books devoted 
respectively  1%  and  1.5%  of  their  pages  to  nondecimal 
numeration.
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· VII ·
APPLICATIONS TO COMPUTERS

UP to 1946 only mathematicians and an occasional king, science 
adviser, engineer, teacher, or other such personage seemed to be 
aware of the existence of nondecimal numeration. This situation 
changed  as  the  progressing  age  of  electronic  computers  made 
even the man in the street aware of the binary system. Ironically, 
this  age began with  the  appearance  of  the  ENIAC (Electronic 
Numerical  Integrator  and  Computer),  the  most  decimal  of 
‘decimal’ computers.

NUMBER REPRESENTATION IN THE ENIAC

John W. Mauchly had conceived of this  computer  in  1942, 
though  the  project  of  building  it  involved  at  least  30  other 
engineers and mathematicians.1 Public knowledge of ENIAC was 
delayed  to  February  14,  1946  because  of  wartime  secrecy. 
Internally, ENIAC reserved 10 flip-flop switches for each decimal 
digit, and only one of these switches could be in the ON position.2 

Corresponding  external  lights  reflected  the  state  of  those 
switches. Since there were 10 banks of 10 lights each, integers as 
high as 9 999 999 999 could be represented. The number 1984, 
for example, would in effect appear as follows:

1984 = (00000 00010,  10000 00000,  01000 00000,  00000 10000). 

In effect, each decimal digit was assigned a ‘one out of ten’ 
binary string as indicated below:

0 00000 00001
1 00000 00010
2 00000 00100
3 00000 01000
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4 00000 10000
5 00001 00000
6 00010 00000
7 00100 00000
8 01000 00000
9 10000 00000

To contrast with this ENIAC number representation, 1984 is 
given  below in  BCD (binary  coded  decimal)  and  pure  binary 
notation:

(7.1) 1984 = (0001 1001 1000 0100)    (BCD)
(7.2) 1984 = (11111000000) (pure binary)

It might be argued that a computer that uses 7.1 is decimal, but 
it also uses the binary system in a minor way to represent each 
decimal digit. If it is argued that this also applied to the ENIAC 
number representation, then even an automobile’s odometer could 
be said to be ‘binary,’ since each of the ten positions on one of its 
wheels  is  in  one  of  two  ‘binary’  states,  namely  ‘hidden’  or 
‘visible.’

THE BURKS-GOLDSTINE-VON NEUMANN REPORT

The special suitability of true binary numeration for computers 
was brought out strongly in this 1947 report. 

In  a  discussion  of  the  arithmetical  organs  of  a  computing 
machine one is naturally led to a consideration of the number 
system to be adopted. In spite of the longstanding tradition of 
building digital machines in the decimal system, we feel strongly 
in favor of the binary system for our device. Our fundamental 
unit of memory is naturally adapted to the binary system since 
we do not attempt to measure gradations of charge at a particular 
point in the Selectron, but are content to distinguish two states. 
The flip-flop again is truly a binary device. On magnetic wires or 
tapes and in acoustic delay line memories one is also content to 
recognize  the  presence  or  absence  of  a  pulse  or  (if  a  carrier 
frequency is  used) of a  pulse train,  or of the sign of a pulse. 
Hence, if one contemplates using a decimal system with
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either the Iconoscope or delay line memory one is forced into a 
binary coding of the decimal system—each decimal digit being 
represented by at least a tetrad of binary digits. Thus an accuracy 
of ten decimal digits requires at least 40 binary digits. In a true 
binary  representation  of  numbers,  however,  about  33  digits 
suffice  to  achieve  a  precision  of  1010.  The  use  of  the  binary 
system is  therefore  somewhat  more  economical  of  equipment 
than is the decimal.

The main virtue of the binary system as against the decimal 
is,  however,  the  greater  simplicity  and  speed  with  which  the 
elementary operations can be performed. To illustrate, consider 
multiplication by repeated addition. In binary multiplication the 
product of a particular digit of the multiplier by the multiplicand 
is either the multiplicand or null according as the multiplier digit 
is 1 or 0. In the decimal system, however, this product has ten 
possible  values  between null  and nine times the multiplicand, 
inclusive. Of course, a decimal number has only  log10  2 ≈ 0.3 
times as many digits as a binary number of the same accuracy, 
but longer than in the binary system. One can accelerate decimal 
multiplication  by  complicating  the  circuits,  but  this  fact  is 
irrelevant  to  the  point  made  since  binary  multiplication  can 
likewise  be  accelerated  by  adding  to  the  equipment.  Similar 
remarks may be made about other operations.

An  additional  point  that  deserves  emphasis  is  this:  An 
important part of the machine is not arithmetical, but logical in 
nature.  Now  logics,  being  a  yes-no  system,  is  fundamentally 
binary.  Therefore,  a  binary  arrangement  of  the  arithmetical 
organs  contributes  very  significantly  towards  a  more 
homogenous  machine,  which  can  be  better  integrated  and  is 
more efficient.

The only disadvantage of the binary system from the human 
point of view is the conversion problem. Since, however, it  is 
completely known how to convert  numbers  from one base to 
another and since this conversion can be effected solely by the 
use of the usual arithmetic processes there is no reason why the 
computer  itself  cannot  carry  out  this  conversion.  It  might  be 
argued that this is a time consuming operation. This, however, is 
not the case . . . . Indeed a general purpose computer, used as a 
scientific research tool, is called upon to do a very great number 
of multiplications upon a relatively small amount of
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input data, and hence the time consumed in the decimal to binary 
conversion is only a trivial percent of the total computing time. 
A similar remark is applicable to the output data.

In  the  preceding  discussion  we  have  tacitly  assumed  the 
desirability of introducing and withdrawing data in the decimal 
system. We feel, however, that the base 10 may not even be a 
permanent  feature  in  a  scientific  instrument  and  consequently 
will probably attempt to train ourselves to use numbers base 2 or 
8 or 16. The reason for base 8 or 16 is this: Since 8 or 16 are 
powers of 2 the conversion to binary is trivial. Since both are 
about the size of 10, they violate many of our habits less badly 
than base 2.3

This  report  was made specifically  to  guide  the  design of  a 
‘scientific’ computer contemplated for the Institute for Advanced 
Study,  Princeton,  N.J.  The  special  suitability  of  true  binary 
numeration  pointed  out  in  the  report  rested  in  part  on  the 
assumption that the computer would be  scientific, that is, would 
do a relatively large amount of computing on a small amount of 
data.

Having a computer act on payroll information (hours worked, 
pay  rate,  tax  rate,  etc.)  for  5000 employees  and  prepare  5000 
paychecks  would  be  an  example  of  a  nonscientific  use  of 
computers,  that  is,  data  processing  or  business  use.  For  such 
business computers, the justification for true binary numeration 
seemed less compelling, and the next two decades continued to 
see both decimal and binary computers. Consistent with the use in 
computer  literature,  a  computer  shall  be  called  binary (even 
though  the  input  and  output  may  be  decimal)  if  number 
representation in its arithmetic unit is in true binary form, i.e., like 
7.2. If the computer uses decimal arithmetic in its arithmetic unit, 
then it will be called a decimal computer. As the report by Burks 
et  al.  pointed  out,  even  a  decimal  computer  has  to  code each 
decimal digit  into at least a tetrad of binary digits, i.e.,  a 4-bit 
string, as shown, for example, in 7.1. The ENIAC had used a 10-
bit string.

According to Richards, the ideas of the Burks report had been 
generated during the development of the ENIAC and were widely 
disseminated during a 1946 summer session at the
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University  of  Pennsylvania.  “Very shortly thereafter,  electronic 
computer projects started at a number of institutions.”4

SOME PRE-ENIAC MILESTONES TOWARD

THE AGE OF THE ELECTRONIC COMPUTER

That  important,  essentially  binary  computer  component,  the 
Eccles-Jordan flip-flop trigger circuit became known in 1919.5

In 1923, Craft et al. reported on automatic telephone switching 
systems as follows:

It  will  be  noted  that  the  method  of  selection  is  not  on  a 
decimal basis. The first selection is to choose one of five brushes 
on the incoming selector . . . . The next selection is by groups of 
500,  which  is  again  nondecimal.  This  “translation,”  as  it  is 
called, of the number from the decimal notation, as dialed by the 
subscriber, into the notation as needed by the selectors, is taken 
care of very simply in the senders.6

The year 1932 marked the first use of binary numeration in 
fast  electronic counting circuits,  or  what  C. E. Wynn-Williams 
called a “Scale of Two” counter.7

The four years beginning with 1938 brought the development 
of the Atanasoff-Berry Computer at Iowa State University.

By today’s terminology, the Atanasoff-Berry computer would 
be  known  as  a  special-purpose  computer  designed  for  the 
solution  of  up  to  30  simultaneous  algebraic  equations  with  a 
corresponding number of unknowns. The mathematical scheme 
for  solving  the  equations  was  the  systematic  elimination  of 
coefficients by combining pairs of equations linearly. Internally, 
the binary system of number representation was used although 
the number input, which was by means of IBM cards,  was in 
decimal form. The machine itself performed the radix conversion 
with 50 binary digits being used for each number.8 

Even  though this  computer  was  never  used  (some portions 
were  incomplete  when  World  War  II  interrupted  the  work  in 
1942), Richards considered it the ancestor of all electronic
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digital systems and reported the following interesting link with 
later work:

One of the few people to study the machine in detail was Dr. 
John Mauchly, who at the time was on the faculty of Ursinus 
College  in  Pennsylvania.  According  to  oral  reports  from  Dr. 
AtanasoH  and  Dr.  Mauchly,  the  two  met  at  an  American 
Association  for  the  Advancement  of  Science  Meeting.  As  a 
result of conversation at this meeting, Dr. Mauchly made a visit 
to ISU in 1941 for the specific purpose of studying the computer 
. . . . Dr. Mauchly is given credit for subsequently initiating the 
ENIAC project.9

According  to  Edmund  Berkeley,  Dr.  George  R.  Stibitz 
introduced  the  “excess  three”  code  in  1939,  using  it  in  his 
Complex Computer, a special purpose machine for manipulating 
complex numbers.10 This code is shown below together with two 
others, the 8-4-2-1 and the biquinary codes.

decimal excess biquinary
digit 8421 three 50 43210

0 0000 0011 01 00001
1 0001 0100 01 00010
2 0010 0101 01 00100
3 0011 0110 01 01000
4 0100 0111 01 10000
5 0101 1000 10 00001
6 0110 1001 10 00010
7 0111 1010 10 00100
8 1000 1011 10 01000
9 1001 1100 10 10000

The following examples illustrate their use: 

(7.3) 1984 = 0001 1001 1000 0100 (8421) 
(7.4) 1984 = 0100 1100 1011 0111 (excess three)
(7.5) 1984 = 0100010 1010000 1001000 0110000 (biquinary)

7.3 is the same as 7.1, that is, the 8421 code is the same as 
binary  coded  decimal.  The  excess  three  code  uses  the  binary 
equivalent of (d + 3) for each decimal digit d (hence its name). 
The biquinary is also known as the (5043210)-code because of 
the place values, or “weights” associated with these 7-bit strings. 
All three belong to a class of codes known as
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decimal  codes,  and  will  be  discussed  as  a  class  in  a  separate 
section.  Stibitz  devised  the  biquinary  code  for  use  in  his 
Biquinary  Calculator.  In  today’s  language,  this  was  a  decimal 
calculator  that  used a 7-bit  code for  the decimal digits.  Stibitz 
explained his choice of the name “biquinary” as follows:

The present  system is  known as  the  biquinary system,  the 
appellation  being  derived  from  the  fact  that  each  digit  is 
expressed through the selection of one of two alternatives out of 
a first group of two and one of five alternatives out of a second 
group of five. One of the groups may thus be said to be on a 
binary basis whereas the other may be said to be on a quinary 
basis and the combination of the two groups is, therefore, said to 
be on a biquinary basis.11

It  should be noted that  this  biquinary code involves neither 
radix 2 nor 5. The number 5 does appear as one of the 7 place 
values—put  paradoxically  in  the  portion  Stibitz  insisted  on 
calling  binary.  Similarly,  the  number  2 appears  in  the  quinary 
portion.12

FOUR-BIT DECIMAL CODES

For the post-ENIAC age, it seems more appropriate to survey 
the variety of number representations in computers and indicate 
some of the reasons for this variety than to trace their appearance 
chronologically.

Consistent with usage in computer literature, a particular way 
of assigning ten n-bit  strings to the ten decimal digits  shall  be 
called  a  decimal  code. The  ENIAC,  (8421),  excess-three,  and 
biquinary codes belong to this class of codes and are 10, 4, 4, and 
7 bits long respectively. A 3-bit code is not possible, there being 
only eight 3-bit strings from 000 to 111, but more than 29 billion 
(16!/6!) 4-bit codes exist (permutations of 16 things 10 at a time). 
The small fraction of these that have been used in computers or 
that  are of  special theoretical  interest  shall  be surveyed in this 
section.

A 4-bit decimal code shall be called weighted if there exists

139



a set of 4 integers (abcd) that may be interpreted as the four place 
values (or weights) of the ten 4-bit strings. (A similar definition 
holds for n-bit decimal codes where n is greater than 4.) The set 
of integers (abcd) shall also be known as a weighting scheme.

Thus, the (8421)-code is a weighted code and is in fact known 
by its set of weights. Can a set of weights be found for the excess-
three code? Suppose (abcd) were such a set. Since in this code 
0011 = 0, it would follow that c + d = 0. Similarly, a = 5, since 
1000 =  5.  But  from this  it  would  follow that  1011 should  be 
assigned to 5, that is, contrary to the actual assignment. Hence, a 
set of weights (abcd) cannot exist for the excess-three code.

At first thought, it would appear that if true binary notation 
was to be avoided in favor of a decimal code, then the (8421) 
should  do  nicely.  In  fact,  depending  upon  the  particular 
application involved, designers saw various alternative codes as 
being  better  suited  to  their  purposes.  Even  within  the  same 
computer,  differing  requirements  might  make  more  than  one 
decimal code desirable. For example, the decimal code in use in 
the  arithmetic  unit  might  differ  from  the  one  in  the  number 
storage units.

The usual way of arranging for subtraction of y from x in the 
arithmetic  unit  makes  it  desirable  that  decimal  codes  be  self-
complementing, a term which shall be explained shortly. In the 
ENIAC, x – y was accomplished in the manner indicated by the 
right side of 

x – y = x + c(y) – 1010

where c(y) is the 10“th complement of y, i.e., where

c(y) = 1010 – y.

The largest number that could be represented by this computer 
was 1010 – 1, and any additions were automatically done modulo 
1010, since the “carry” into the (1010)s place was lost. For x = 801 
and y = 527, to use the example reported by H. Goldstine and 
Adele Goldstine, c(y) = 9 999 999 473.

140



Given this  procedure, the question arises of  how easily one 
might  arrange  to  find  c(y)  from the  known y.  One  notes  that 
corresponding digits of y and c(y) must add up to 9 except in the 
units  digits,  which  add  up  to  10.  Indeed,  by  changing  the 
procedure slightly to

x – y = x + k(y) + 1 – 1010,

where

k(y) = (1010 – 1) – y

the exceptional case of the units digits is eliminated and k(y) can 
easily be found by taking the 9’s complement of  each  decimal 
digit of y.

If the decimal digits are represented by strings of the excess-
three  code,  then  the  finding  of  k(y)  is  particularly  easy.  Each 
string representing the digit d that can be changed to the string 
representing (9 – d) by simply reversing the value of each binary 
digit, i.e.,  replacing each “0” by “1” and each “1” by “0”. For 
example, 1000 = 5, but 1000 becomes 0111 upon “reversal,” and 
0111 = 4—which is  the 9’s complement  of  5.  Such a  code is 
called self-complementing.

The  (8421)-code  is  not  self-complementing,  since,  for 
example, 1000 = 8, but 0111 = 3 and 8 + 3 ≠ 9. A machine that 
uses  the  (8421)  or  some  other  decimal  code  that  is  not  self-
complementing  must  have a  procedure  for  finding k(y)  that  is 
more cumbersome than a simple reversal of all binary digits of y.

Designers have seen two additional advantages in excess-three 
over the (8421)-code. One is the avoidance in the former of the 
0000 string,  which in the latter  was indistinguishable from the 
complete absence of a string. The other has to do with the ease of 
arranging  for  addition  of  two  decimal  digits  and  making 
arrangements for any possible ‘carry.’ For example, 4 + 6 = 10 or 
4 + 6 = 0 (mod 10) would temporarily involve 0111 + 1001 = 
10000. The appearance of a fifth place is a simple criterion for 
arranging  a  decimal  carry that  is  not  available  for  the  (8421)-
code.  However,  “10000”  needs  a  double  correction  for  being 
excess-six instead of excess-three
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TABLE 2

Selected 4-bit Decimal Codes
and their Characteristics
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(the true binary sum of two excess-three strings being excess-six), 
the other for  the  decimal carry that  has been made.  This calls 
respectively for –3 and –10 or a total correction of –13, which is 
accomplished simply by suppressing the “1” in “10000” (which 
has  the  effect  of  subtracting  16)  and  by  adding  3.  After  this 
correction,  the  desired  result  0111  +  1001  =  0011  (mod  ten) 
appears.

The accounts of R. K. Richards (Chapter 6) and Willis Ware 
indicate  that  computer  designers  look  for  characteristics  in  a 
decimal code that are convenient to the user of the equipment or 
to the designer.13 They seek affirmative answers to one or more of 
the  seven  questions  listed  below.  Eight  examples  of  decimal 
codes  and  corresponding  answers  to  the  seven  questions  are 
shown  in  Table  2.  Cl  and  C2  in  that  table  are  the  already 
discussed (8421) and excess-three codes.

(1). Is it weighted? (There is at least a mnemonic advantage in 
weightedness.)

(2). Is it self-complementing?
(3). Does it  have a minimum number of “1”’s? (Since a “1” 

usually  indicates  that  some  electronic  device  is  ON,  electric 
power use can be minimized by minimizing the use of “1”’s. By 
including  the  0000  string  and  avoiding  strings  having  3  or  4 
“1”’s, the total can be kept down to 14).

(4). Is there a simple way to distinguish the first five from the 
last  five  strings,  such  as  having  the  left-most  digit  0  and  1 
respectively?

(5). Does it avoid the 0000 string?
(6). Is  it  reflected?  (A  code  is  called  reflected, if  for  each 

decimal digit d and its successor [d + 1], the binary strings differ 
by only a single one of the four bits. The excess-three and [8421]-
codes  are  not  reflected,  since  for  each,  adding  unity  to  0111 
results in 1000, requiring a total of 4 digit reversals.)

(7). Does  it  have  error-detecting  or  -correcting  properties? 
None of the eight 4-bit codes of Table 7.1 has a YES for question 
7, since this would require the longer codes discussed in the next 
section.
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TABLE 3

Selected Decimal Codes whose Length
is Greater than Four Bits
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Weighted 4-bit codes have been studied thoroughly. It should 
be noted that the codes C7 and C8 have the same set of weights, 
namely  (7421),  yet  the  former  is  known  as  the (7421)-code, 
because it has actually been used. Some weighting schemes, such 
as (7421), are associated with two or more decimal codes. Others, 
such as (8421), define a unique code. In 1955 Richards published 
a list of 70 weighting schemes (abcd), each having one or more 
decimal codes.14 Richards indicated that these 70 were the only 
ones known, but that his list might not be exhaustive since it had 
been found “by a cut-and-try search process.” His list included 17 
schemes with all weights positive; the rest had one or two weights 
negative.

G. P. Weeg reported in 1960 that his lemmas and associated 
computer searches had established, in substance:

Theorem 7.1: There exist only 17 (all of which had appeared 
in  Richards’  list) weighting  schemes  with  all  weights  positive,  
and of these 17,  only one, the  (8421)-scheme, defines a unique 
code, the remaining ones having two or more codes associated 
with themselves.

Theorem 7.2:  There exist only 71 (53  of  which had already 
appeared in Richards’ list) weighting schemes with one or two 
weights negative. Of these 71 schemes, 21 define unique decimal 
codes. 

Theorem 7.3: No 4-bit  weighting scheme can exist which has  
more than two negative weights.

Theorem  7.4:  In  a  weighting  scheme  (abcd) with  all  four 
weights positive, at most one weight can exceed 4.

DECIMAL CODES THAT ARE LONGER THAN FOUR BITS

Two such longer codes have already been mentioned and are 
repeated  as  C9  and  C10  in  Table  3.  As  indicated  in  the  last 
section,  such  longer  codes  may  be  desirable  for  their  error-
detecting  or  error-correcting  properties,  although  few  post-
ENIAC designers considered going beyond a 7-bit length for this 
purpose.
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Even a 4-bit code has limited error-detecting properties. In the 
case of the (8421)-code, for example, should the string 0111 be 
intended and should 1111 appear erroneously instead, this could 
be detected, because the latter string is unassigned in this code—it 
is  illegal. On the other hand, 0111 might erroneously appear as 
0110, which could  not readily be detected as an error,  because 
0110 is not an illegal string in that decimal code.

For every 4-bit code there are 10 4-bit strings that are legal 
and 6 that are not. Since there exist 2” n-bit strings and since only 
10 of these need be assigned for a decimal code, the number of 
illegal strings increases rapidly with n, being 6, 22, 54, and 118 
for n = 4, 5, 6, and 7 respectively.

Checking the  parity (whether the number of “1”’s is odd or 
even) of a string happens to be easily arranged in a computer. 
Hence the preference for a decimal code that has every string of 
the same parity. Such codes shall be called parity codes.

Code C11 of Table 3 is such a parity code. It has odd parity, 
that is, every string has an odd number of “1”s. Any single error 
in a string (a single bit having a value opposite to that intended) 
would be reflected in a change from odd to even parity and hence, 
would show up during the parity check. A double error, on the 
other hand, would keep parity intact and could not be detected 
through a parity check.

Code C11 may be thought of as the (8421)-code with a parity 
bit prefixed. The value of the parity bit  is chosen to give each 
string  odd  parity.  Since  the  parity  bit  adds  no  additional 
information and is completely determined by the other four bits, it 
is also known as the redundancy bit.

When Code C7, also known as the (7421)-code, is improved in 
a  certain  two  ways,  it  becomes  C12.  One  improvement,  even 
though that destroys the weighting scheme, is the elimination of 
the  0000 string  in  favor  of  1100.  The  second improvement  is 
attaching a parity or redundancy bit at the right end of each string 
to give even parity.

Code  C13  is  of  special  interest  because  of  its  wide  use  in 
telephone dialing equipment. The essential indistinguishability
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of C13 and C12 becomes clear when one imagines two telephone 
company employees standing on either side of a set of 5 switches 
representing a decimal digit. The one in front will see the digit 9 
in the form of 00101 in accordance with C13, the other will see 
the digit as 10100 in accordance with C12. Each binary digit “1” 
is represented by a switch that is ON and each “0” by a switch 
that is OFF.

This  code  C13  is  attractive  to  the  telephone  companies 
because checking (by machines or human beings) is facilitated by 
the fact that every 5-bit string has exactly two “1”s. Such a code 
is  called  a  two-out-of-five  code.  Similarly,  the  ENIAC-code 
might  be  called  a  one-out-of-ten  code.  The  biquinary  may  be 
called a two-out-of-seven code or a combination code made up of 
a one-out-of-two and a one-out-of-five code. Moreover, which of 
the five switches should be ON can readily be remembered by the 
(01247) weighting scheme that fits all except one of the decimal 
digits.

When  the  number  1964  is  dialed  within  a  given  phone 
exchange, that number is likely to be represented as indicated by 
the right side of

1964 = (11000 00101 00110 10010) (C13)

and not the right side of

1964 = (11110101100) (true binary),

as the 1964 Bell Telephone Company Exhibit at the New York 
World’s Fair seemed to suggest.

Among the 32 5-bit strings from 00000 to 11111, only 10 exist 
that have exactly two “1”s. Hence every two-out-of-five decimal 
code uses some permutation of those same strings. C12, C13, and 
C14, for example, are permutations of the same ten strings. In 
general there exist n

2 two-out-of-n strings among the 2n n-bit 
strings, so that again, a greater variety of codes becomes available 
to  the  designer  who  is  willing  to  pay  the  price  of  additional 
length.

Code  C14  is  another  example  of  a  code  that  is  not  truly 
weighted. Nevertheless, the set of weights (63210) is used as a
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mnemonic device because it fits all but one of the strings. The last 
bit is a parity bit.

The  methods  indicated  so  far  may  identify  a  string  that 
contains a  single  error  without  identifying the particular  bit  in 
error,  i.e.,  without  error-correcting potential.  That  the  latter  is 
possible at all, will be seen by the following example. Suppose 
the  number  1984  is  to  be  represented  in  (8421)-code  and  the 
information presented in  matrix form as  indicated by the right 
side of

10001
01001

1984    = 11000
10100
10100

where the digits in  italics are redundancy bits, one for each row 
and column of the original 4×4 matrix and also one (in the lower 
left corner) for the other redundancy bits. Suppose, now, that this 
set of 25 bits is transmitted from one computer register to another 
and arrives in the condition indicated by the right side of

10001
01001

1984    = →11001
10100
10100
        ↑

where the single error has been underlined. The redundancy bits 
had been chosen for even parity and a check of each column and 
row will  reveal  that those indicated by arrows fail  to have the 
desired even parity. This leaves little doubt that the error lies in 
the bit already underlined. By changing the erroneous bit to its 
opposite value, the desired correction is effected.
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R. W. Hamming indicated in his 1950 article that he had found 
no  references  to  error-correcting  codes  that  predated  Marcel 
Golay’s 1949 article.15 How quickly the theory, if not the actual 
use, of error-correcting codes mushroomed may be seen by the 
fact that W. Wesley Peterson published a 270page book,  Error-
Correcting Codes, in 1961.

BINARY VERSUS DECIMAL

If most of the space of this chapter has so far been devoted to 
binary strings for decimal digits, i.e., for  decimal codes used in 
decimal computers,  it  is  because  the  use  of  true  binary,  in 
contrast,  brought  no  particular  surprises  or  new  developments 
during the computer age. That true binary could be seen as binary 
coded octal  or  hexadecimal (or base 2n for  any n) had already 
been pointed out in the Burks report and the insight itself goes 
back  at  least  to  Legendre.  That  this  insight  in  turn  makes 
conversion from binary to octal or hexadecimal a  trivial matter 
was also known long before the computer age began. The Burks 
report also pointed out that conversion from decimal to binary or 
vice  versa,  while  not  trivial,  was  nevertheless  “completely 
known.”

It  is  not  the  purpose  of  this  section  to  discuss  the  relative 
merits of binary versus decimal computers, but merely to point 
out  some  of  the  outward  manifestations  of  their  inward 
differences.

Such an outward manifestation can be seen in Table 4. The 
particular decimal computer used (an IBM 7074) limits mantissas 
to 8 decimal digits. The particular binary computer used (an IBM 
360) similarly limits mantissas to 24 binary digits—at least for 
ordinary use.

For  x  = 3,  for  example,  the  decimal computer  used 0.3333 
3333 (instead of  the  true  decimal  equivalent  of  1/3)  and then, 
upon multiplication by 3, got the result of 0. 9999 9999 that has 
been recorded in Table 4. The binary equivalent of 1/3 is also 
infinitely long, namely,

1/3 = (0.010101010b1b...)2.
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TABLE 4

Comparison of Output from a Decimal and a Binary
Computer, Each Having Been Programmed

to Compute X(1/X) for Certain
Integral Values of X

150



The binary computer used a truncated version of this, namely, 

0.0101 0101 0101 0101 0101 0101,

which  reads  0.555  555  in  hexadecimal.  Multiplying  this  by  3 
gives hexadecimal 0.FFF FFF which equals (166 – 1)/(166), which 
is  approximately  equal  to  decimal  0.9999  9994,  as  shown  in 
Table 4.

For x = 10, the decimal equivalent of 1/x happens to terminate 
within the length of the register of the decimal computer.  This 
introduces no truncation error and accounts for the correct entry 
of 1.000 000. The binary equivalent of 1/10, however, is infinitely 
long,  hence  a  truncation  error  is  introduced  when  the  binary 
computer  uses  only  the  first  24  digits  of  an  infinitely  long 
mantissa.

It is precisely the binary computer’s inability to represent 1/10 
exactly  that  led  Daniel  McCracken  (see  page  2)  to  warn 
prospective  FORTRAN  programmers  that  they  would  be 
disappointed if they counted on 1/10 being represented exactly, 
and 2000 times 1/10 to  come to  200 exactly—this  being their 
criterion number  for  terminating a  sequence of operations in a 
particular sample program—at least if such a program were being 
run on a binary computer.

The  Reference  Day  Book of  1966,  published-late  in  1965, 
listed 139 currently available general purpose digital computers. 
Of those listed 46 were decimal, 72 binary, 4 octal, 15 could do 
their arithmetic in either binary or decimal, and 2 were declared 
biquinary. Since the last 2 should probably be counted among the 
decimal  computers  and  the  octal  among  the  binary,  the  final 
counts are 76 binary, 48 decimal, and 15 binary and decimal.

ALPHANUMERIC CODES

Since  input  and  output  for  large-scale  electronic  computers 
may involve characters other than the ten decimal digits, there is 
need  to  have  codes  for  the  letters  of  the  alphabet  and  other 
symbols, such as the comma and the period. The 26 letters
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TABLE 5

Selected Alphanumeric Codes



of  the  alphabet  and  the  10  decimal  digits  together  obviously 
require  more than  32  binary  strings  and  at  least  a  6-bit  code. 
Several such codes are shown in Table 5.

Code C15 is the “six bit printer synchronizer code” used in the 
UNIVAC 9200/9300 series computers. Strictly speaking, C16 and 
C17 are not alphanumeric codes, since no assignment is shown 
for the ten decimal digits. Code C16, with a marked similarity to 
C15,  was  first  devised  about  1579,  by  Sir  Francis  Bacon,  as 
already mentioned in Chapter 1.

Code  C17  is  a  possible  interpretation  of  the  Braille  code 
widely used by the blind, and substantially the same as designed 
by Louis Braille in 1829. This code assigns 40 of the 64 possible 
subsets of six raised dots (2 columns of 3) to the letters of the 
alphabet and some commonly used short words and syllables. For 
example: 

Code C17 results from the interpretation of a raised dot as “1” 
and a potential dot as “0,” according to the order

1   6
2   5
 3   4.

Code C18 is used in the IBM 360 series computers. It should 
be noted that this is a binary computer, i.e., it uses true binary in 
its  arithmetic  unit.  But  since  input  and  output  is  decimal,  a 
decimal code (shown as part of the alphanumeric code) is also 
needed.

Peano’s alphanumeric code of 1899 has already been shown in 
Chapter 5.

REFLECTED OR GRAY CODES

A reflected decimal code has already been mentioned, namely 
C5  of  Table  2.  In  its  purest  form,  however,  a  reflected  code 
involves a permutation of all 2n n-bit strings and assignment
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FIGURE 12. Geometric Model for 3-bit Reflected Codes.
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of them to the integers 0, 1, ..., (2n – 1). The permutation must 
show any two successive strings to be identical except for a single 
one of their n bits. Moreover, the first and last string should again 
show  this  minimum  difference.  Each  of  the  following 
permutations  of  the  eight  3-bit  strings  assigned  to  the  8  octal 
digits constitutes a reflected code.

If an n-bit string is viewed as a n-tuple, and hence also as a 
point in n-space, and if the distance between two such n-space 
points is  defined as the usual generalization of the comparable 
formula  in  3-space,  then  the  essential  property  of  the 
permutations  involved  in  a  reflected  code  can  be  stated  as 
follows: Any two successive strings (the first and last also being 
considered  successive)  have  a  distance  of  exactly  1.  The 
maximum  distance  between  two  n-bit  strings  is  n —the 
distance  between  0...0  and  1...1.  Figure  12  shows  such  an 
interpretation  for  3-space.  The  question  as  to  how many  3-bit 
reflected  codes  are  possible  can  be  formulated  as:  How many 
paths exist along the edges of a cube from point A(0,0,0) that go 
through each vertex once and return to point A? 

E.  N.  Gilbert  addressed  himself  to  this  question  for  n-bit 
reflected codes in general.16 For n ≤ 4 he exhibited all such codes. 
He found that  the number of  such codes increases enormously 
with n, but he was unable to come up with a precise formula. 

Without knowing the exact number possible of n-bit reflected
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TABLE 6

N-bit Reflected Codes for N = 1 to N = 5 that Suggest
a Method of Generating Longer Reflected Codes
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codes, it is nevertheless easy to generate one in almost random 
fashion by starting with the 0...0 string and making a single 
change at a time.

A more systematic way of generating an n-bit reflected code is 
suggested in Table 6. Here C22 is imbedded in C23, which in turn 
is imbedded in C24 and so on.

As early  as  1954,  F.  A.  Foss  reported that  up to  that  time 
reflected  codes  had  found  use  only  in  analog  to  digital 
conversions.17 Here, a number represented by the amount a shaft 
has turned is converted into digital form. For this application it is 
particularly important that the first and last strings are also only a 
single change apart, since they will occupy adjacent positions on 
the  shaft.  Foss  reported that  reflected  codes  are  also useful  in 
digital control systems and urged their use for this purpose. At 
that time such codes were already known as Gray codes because 
of a patent that had been issued to F. Gray a year earlier.
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· VIII ·
CONTEMPORARY LITERATURE

A  WEALTH of  articles  and  sections  of  books  on  nondecimal 
numeration appeared after 1946. The discussion in this chapter is 
limited to those that go beyond previous results or are of special 
interest  because  of  their  actual  or  potential  influence  in  the 
schools.

SOME NOTEWORTHY ARTICLES

R.  Bellman  and  H.  N.  Shapiro  (1948)  presented  results 
concerning  the  sums of  digits  of  numbers  in  dyadic  notation.1 

Included among these was, in substance,

Theorem 8.1: As x tends to infinity, A(x) tends to

xlogx
2log2 ,

where  A(x) denotes the sum of all  dyadic digits of all positive  
integers from 1 to x inclusive.

L. Mirsky (1949) extended these results somewhat, as did M. 
P. Drazin and J. Stanley Griffith in 1952.2

A further  extension  of  these  results  was  presented  by  Peh-
Hsuin Cheo and Sze-Chien Yien, who proved (1955)3

Theorem 8.2: As x tends to infinity, A(x) tends to 

 β − 1
2    xlogx

logβ

where  A(x) is now the comparable sum of the β-adic digits for  
any base β.

Kenneth Rose (1957) presented a good historical view of the
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octal system from the days of Swedberg (1700) to the computer 
age.4

C. E. Shannon (1950) indicated the possible use for computers 
of numeration systems that are standard except for use of negative 
digits (like the Barlow and Cauchy modifications).5 Such systems 
would be especially helpful if the radix used were odd, for then 
the system would be  symmetric (the number of  negative digits 
equals  the  number  of  positive  digits).  The  electrical  circuits 
involved with such a system could be simplified.

In response to Shannon’s article Z. Pawlak and A. Wakulicz 
(1957) investigated the possible advantages of a negative base  β 
and proved.6

Theorem 8.3: Every real number has an expansion to the base  
β, where β is an integer less than—l.

Theorem  8.4:  If  a  number  has  a  finite  expansion,  that  
expansion is unique.

In response to this last article, W. Balasinski and S. Mrowka 
(1957)  worked  out  a  criterion  for  evenness  and  oddness  of  a 
number N in such a negative base notation.7 They also worked out 
a (–2) base division logarithm.

Apparently without  benefit  of  previous work on nonintegral 
bases, George Bergman (1957), while still a junior high school 
student, showed the use of base τ (tau) where

τ = (1 + 5 ) /2 = 1.618 022 98... .

He showed, for example, that

1/2 = 0.0100100100100100100b1b0b... ,
5 = 1000.1001... , and
1 = 0.11 = 0.1011 = 0.101011

= 0.10101011.

Bergman indicated that no rational fraction can be terminating in 
this base system, since that would mean that it were equal to a 
sum of integral powers of τ.8

In  1960  Donald  Knuth  introduced  the  “quater-imaginary” 
numeration system that has the imaginary number (2i) as its
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base.8a In this system every complex number can be represented 
using only the four digits 0, 1, 2, and 3—moreover, no plus or 
minus sign is needed. In the following examples the right-hand 
side is written in this new notation:

i = 10.2
–i =   0.2

7.75 – 7.5i = 11210.31

H. L. Alder (1962) investigated those nonstandard numeration 
systems whose place values are not the series

1, β1, β2, β3, β4, ... ,

but rather

1, f1, f2, f3, f4, ... ,

where the fi’s are any nondecreasing set of integers.9

Jiri  Klir (1962) broadened the above by permitting negative 
and  nonintegral  numbers  among  his  fi’s.  He  concentrated, 
however,  on  decimal  codes  for  possible  use  in  computers  and 
went beyond the results obtained by G. P. Weeg.10

Konrad  Fialkowski  (1963)  went  beyond  previous  results 
involving base (–2) and weighted decimal codes, having in mind 
their possible usefulness in computers.11

J.  L.  Brown  (1964)  followed  up  Alder’s  investigation  of 
nonstandard numeration systems.12

N.  J.  Fine  (1965)  addressed  himself  to  the  following 
conjecture:13

Conjecture: N(x) is asymptotically x/(132), where N(x) denotes 
the number of n less than x such that n is a multiple of 13  and 
also has a digit sum that is a multiple of 13.

Fine  proved  the  following  theorem  which  includes  this 
conjecture as a special case.

Theorem 8.5:  As x tends to infinity,  N  x 
x tends to 1/(p2), 

where N(x) denotes the number of n less than x such that n = a 
(mod p) and sn= c (mod p), where sn denotes the β-adic

161



digit sum of n, and where a and c are any two residues mod p and  
where p is prime and does not divide (β – 1).

Walter  Penney  (1965)  indicated  that  computers  might  be 
designed to use the nonreal, complex base, β = (–1 + i), where i2 = 
–1,  and  that  numbers  of  the  type  X  +  Yi  could  then  be 
represented,  where X and Y are either  integers or  of  the form 
k/(2n).14

G.  F.  Songster  (1963)  gave  algorithms  for  negative  base 
arithmetic, particularly for β = –2, in which, for example,15

-35/12 = 1101.011b0b... .

L.  C.  Eggan  and  C.  L.  Vanden  Eynden  (1966)  further 
investigated the use of rational bases  β and the  β-adic strings of 
rational numbers.16 Among their results is

Theorem 8.6: If β is rational, then any number has at most one 
periodic expansion to the base β.

Karl  Kieswetter  (1966)  applied  base  4  notation  toward 
constructing a simple example of a function which is everywhere 
continuous and nowhere differentiable.14

Edgar Karst (1967) worked out some algorithms that used two 
different standard numeration systems simultaneously.18

AMOUNT AND EXTENT OF COVERAGE

OF NUMERATION SYSTEMS IN COLLEGE TEXTBOOKS

FOR FUTURE ELEMENTARY SCHOOL TEACHERS

The only content course in Mathematics (as distinct from one 
in  the  teaching  of  mathematics)  usually  required  of  future 
elementary school teachers is likely to use a text like one of the 
twelve in the following numbered list:

1. Armstrong, James W.  Mathematics for Elementary School  
Teachers. New York: Harper & Row, 1968.

2. Bouwsma, Ward D., Clyde G. Corle, and Davis F. Clemson, 
Jr. Basic Mathematics for Elementary Teachers. New York: 
The Ronald Press, 1967.

162



3. Byrne,  J.  Richard.  Modern Elementary Mathematics. New 
York: McGraw-Hill, 1966.

4. Copeland,  Richard  W.  Mathematics  and  the  Elementary  
Teacher. Philadelphia: W. B. Saunders, 1966.

5. Crouch,  Ralph  and  others.  Preparatory  Mathematics  for 
Elementary Teachers. New York: Wiley, 1965.

6. Kovach,  Ladis  D.  Introduction  to  Modern  Elementary  
Mathematics. San Francisco: Holden-Day, 1966.

7. Moise,  Edwin  E.  The  Number  Systems  of  Elementary  
Mathematics. Reading, Mass.: Addison-Wesley, 1966.

8. Peterson,  John  A.  and  Joseph  Hashisaki.  Theory  of  
Arithmetic. New York: Wiley, 1963.

9. Schaaf,  William  L.  Basic  Concepts  of  Elementary  
Mathematics. New York: John Wiley, 1961.

10. Swain,  Robert  L.  Understanding  Arithmetic. New  York: 
Holt, Rinehart and Winston, 1965. 

11. Webber, G. Cuthbert and John A. Brown. Basic Concepts of  
Mathematics. Reading, Mass.: Addison-Wesley, 1963.

12. Webber,  G.  Cuthbert.  Mathematics  for  Elementary 
Teachers. Reading, Mass.: Addison-Wesley, 1967. 

Table  7  presents  some  indications  as  to  the  coverage  of 
nondecimal numeration systems in these texts. For comparison, 
the number of  pages devoted to ancient  numeration systems is 
also given.

This analysis was made because the coverage in such texts is 
likely  to  represent  an  upper  bound  of  the  amount  and  extent 
nondecimal  standard  numeration can  be covered  in  elementary 
schools,  irrespective  of  what  appears  in  elementary  textbooks 
themselves.

All  but  one  of  the  twelve  texts  explicitly  indicated  a 
connection between the binary system and computers.  None of 
them covered divisibility rules for nondecimal bases. All but three 
included  multiplication  and  addition  tables  for  at  least  one 
nondecimal base. β-adic representation of fractional numbers was 
taken up by only two of them. Applications to recreational
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TABLE 7

Content Analysis of Twelve College Textbooks
for Future Elementary Teachers with Respect to Numeration Systems



mathematics were limited to NIM (one of the books) and guess 
the number cards (four of the books).

NONDECIMAL NUMERATION IN THE SMSG
(SCHOOL MATHEMATICS STUDY GROUP)
SEVENTH GRADE MATERIAL 

Volume  I  of  Mathematics  for  the  Junior  High  School was 
intended for the seventh grade and has been available and widely 
used since the Fall of 1961. The foreword states: “It should be 
thought of as a sample of the kind of improved curriculum that 
we  need  and  as  a  source  of  suggestions  for  the  authors  of 
commercial textbooks.”

Its second chapter, “Numeration,” devotes 5, 8, and 31 pages 
to ancient, decimal, and nondecimal systems respectively. Those 
31 pages are about 5% of the 623 pages that constitute the SMSG 
seventh grade material. Base 7 is singled out for fairly thorough 
treatment. Addition and multiplication tables are developed and 
examples of all four arithmetic operations are given. Some of the 
exercises  are  designed  to  alert  the  student  to  the  fact  that  the 
familiar  divisibility  rules  are  tied  to  base  10  and  need  to  be 
modified for base 7 numerals. Bases 2, 5, 6, 12, and 60 are also 
given  some  attention.  For  base  2,  panels  of  lights  and  other 
examples indicate its special suitability for computers.

For changing a number N from base 10 to base β notation, the 
method of dividing N by the highest power of β that goes into it 
(and the resulting remainder by the next highest, and so on) is 
shown.  An  attempt  at  justifying  this  procedure  is  included. 
Several  other  methods  are  suggested  through  exercises  or 
“brainbusters.”  The  entire  chapter  on  numeration  systems  is 
restricted to whole numbers.

CONTEMPORARY REFERENCES FOR TEACHERS

Future  secondary  teachers  may  be  exposed  to  nondecimal 
numeration in a course in the theory of numbers (usually not



required),  in  some  survey  course  on  modern  mathematics,  or 
perhaps  in  a  course  on  mathematics  education.  The  future 
elementary teacher, however, is more certain of exposure. Aside 
from books already reviewed and still in print or otherwise widely 
available,  the  following are  good references  in  English on the 
topic of nondecimal numeration.

One of the most comprehensive references—treating fractional 
as  well  as  whole  numbers—is  Topics  in  Mathematics  for  
Elementary School Teachers, published by the National Council 
of Teachers of Mathematics in 1964.

Applications to recreational mathematics (NIM, Chinese Ring 
Puzzle, Tower of Hanoi) are treated in Edward Kasner and James 
Newman’s Mathematics and the Imagination.

Very concise discussions of  β-adic notation may be found in 
Olmstead’s  book  and  also  in  Grace  Bates  and  Fred 
Kiokemeister’s—both entitled The Real Number System. 

Invitation  to  Mathematics by  William Glenn  and  Donovan 
Johnson includes a particularly good layman’s description of how 
binary strings can be transmitted through pulsating signals. 

Oystein  Ore’s  Invitation  to  Number  Theory contains  some 
material on “Which base is best?” that is probably not otherwise 
available.

Solved and Unsolved Problems in Number Theory by Daniel 
Shanks gives a fascinating glimpse into the perfection of perfect 
numbers  as  revealed  by  the  reciprocals  of  their  divisors  when 
written  in  binary  notation.  Sherman  Stein’s  Mathematics,  The 
Man-made Universe contains a chapter on “Memory Wheels” that 
explores  certain  permutations  of  n-bit  strings  and  their 
applications to information transmission.

The  Bible  Dates  Itself, which  was  privately  published  by 
Arthur  Earle  in  1974,  is  a  surprising  source  on  nondecimal 
numeration. Consider that Adam was 130 years old when Seth 
was born, that Joseph died when 110, and that Solomon was a 
judge for 20 years. But if you assume, as Earle does, that these 
numbers were written in base seven, we find that the numbers 
shrink to 70, 56, and 14 respectively when translated into base
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10 notation. Aside from making these numbers more plausible, 
Earle’s  assumptions,  for  which  he  gives  rather  persuasive 
arguments,  result  in  a  good  alignment  of  biblical  events  with 
otherwise known historical reference points—and hence the title.

For  a  particularly  good,  in-depth,  and  comprehensive 
treatment of positional number systems see Chapter 4 of Knuth’s 
1981 Seminumerical Algorithms.

NOTES TO CHAPTER VIII
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· IX ·
SUMMARY

CHRONOLOGY OF IMPORTANT EVENTS IN
THE DEVELOPMENT OF NUMERATION SYSTEMS

SINCE 1500 A.D.

1500s. The Hindu-Arabic Numeration system took a firmer hold 
in Western civilization, relegating Roman numerals to such 
minor uses as numbering chapters of books.

1585.  Simon  Stevin,  Dutch  mathematician,  published  his  De 
Thiende, which  resulted  in  decimal  fractions  becoming  a 
regular part of school arithmetic throughout Europe.

1600 (circa). Thomas Hariot, an English mathematician, was the 
first  person on record to use the binary system. However, 
this did not become known until 1951, when J. W. Shirley 
reported  on  Hariot’s  unpublished  manuscripts.  Hariot  had 
been to America to survey the colony of Virginia on behalf 
of Sir Walter Raleigh. It is possible that he first thought of 
the binary system during the long ocean voyages to and from 
America.

1623.  Francis  Bacon  published  his  De Augmentis  Scientarum. 
The first known binary code for the letters of the alphabet is 
contained therein.

1665. Blaise Pascal published divisibility rules so general as to be 
applicable to  numerals  in  any base  β. He showed specific 
examples only for bases 10 and 12.

1670. Juan Caramuel y Lobkowitz, a learned bishop in Rome,
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was  the  first  to  publish specific  examples  of  base  2 
representations of numbers. He also treated bases 3, 4, 5, 6, 
7, 8, 9, 12, and 60. His publication went unnoticed allowing 
Leibniz to be hailed as the discoverer of the binary system 33 
years later.

1672. Erhard Weigel, professor of mathematics at Jena, published 
on base 4 numerals. He was one of Leibniz’s teachers. 

1687.  Joshua  Jordaine’s  Duodecimal  Arithmetick appeared  in 
London.  He  advocated  base  12  numerals—at  least  for 
fractional numbers—because they are more practical when 
dealing with fractions of  a foot  or  other measures divided 
into 12 parts. 

1697. Gottfried Leibniz (1646–1716) wrote a letter to the Duke of 
Brunswick  about  the  binary  system.  Unaware  both  of 
Lobkowitz’s  published  work  and  of  Hariot’s  unpublished 
work, he discovered the binary system on his own and had 
been  mentioning  it  in  private  correspondence  for  about  a 
decade.  In  the  letter  to  the  Duke,  he  suggested  that  a 
medallion be struck to commemmorate the discovery of the 
binary system. The Duke, then 70, ignored the suggestion. 

1703. Leibniz’s article, “Explication de 1’arithmétique binaire,” 
appeared in the official journal of the French Academy of 
Science along with editorial commentary hailing him as the 
discoverer  of  this  new  arithmetic.  The  same  commentary 
identified Lagny as a simultaneous discoverer of the binary 
system. 

1708. Emanuel Swedberg, later known as Swedenborg, proposed 
that the decimal system be replaced for common use by the 
octal numeration system and that weights and measures be 
also  octalized.  Swedberg  and  the  King  of  Sweden,  who 
strongly  supported  this  matter  for  his  domains,  had 
considered base 64 at first, but had rejected this because it 
required too many symbols. They agreed
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that  the  base  of  the  numeration system ought  to  be  some 
power of 2, i.e., one of the numbers 2, 4, 8, 16, 32, 64, etc. 
They settled on 8. However, the king was killed by a cannon 
ball soon thereafter and with him was buried the proposal to 
octalize numeration in Sweden. 

1798.  Adrien-Marie Legendre apparently had the insight  that a 
binary string is at once a binary-coded base 64 string, or a 
binary-coded base 2n string for any positive integer n. With 
the  computer  age  began  wide  use  of  this  insight,  which 
makes conversion from binary to octal (or hexadecimal) a 
trivial matter. 

1799. The International Metric System of weights and measures 
took  final  form  and  started  its  path  toward  international 
adoption.  Since  it  is  a  decimalized  system,  it  dovetailed 
neatly with the decimal numeration system. This made it less 
likely  than  ever  that  a  proposal  to  replace  base  10  for 
common  use  (such  as  Swedberg’s)  would  ever  find 
acceptance. 

1811. Peter Barlow published his An Elementary Investigation of  
the Theory of Numbers in London. He referred to numeration 
systems as “scales of notation,” gave their divisibility rules, 
and  showed  that  the  nondecimal  “scales”  were  useful  in 
some special situations. 

1853.  Augustus  DeMorgan’s  The  Elements  of  Arithmetic 
appeared, and contained sections on nondecimal numeration 
systems. He assumed base 10 was here to stay, but he felt 
every student should have some experience with nondecimal 
bases for the greater insight this would give into the common 
base 10.

1857. Sir Isaac Pitman spoke up strongly against proposed British 
adoption of the metric system of weights and measures. He 
recommended instead the more radical reform of changing 
both the numeration system and the system of weights and 
measures to a duodecimal (base 12) system. The number 12 
is to be preferred as the base, he
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argued, because 12 is divisible by 2, 3, 4, and 6, whereas 10 
is divisible only by 2 and 5. Echos of his position are heard 
to this day in Great Britain and the United States of America 
from opponents to full  adoption of the decimalized metric 
system.

1862. John William Nystrom proposed base 16 as a replacement 
for base 10. He offered a system of weights and measures 
also based  on  16.  Four  years  later  he  advocated base  12. 
Apparently he was primarily anti-metric system and hence 
antidecimal. 

1897.  Great  Britain  became  the  last  major  country  to  legalize 
optional use of the metric system in trade. The United States 
of America had done so in 1866. 

1901. C. L. Bouton showed that the binary system was the key to 
a complete mathematical theory of the game of NIM. 

1946.  The  first  large-scale,  general  purpose  electronic  digital 
computer, the ENIAC, was completed in Philadelphia. While 
the ENIAC itself did not use true binary, the people involved 
in the project formulated principles of computer design later 
reported  in  the  Burks-Goldstein-von  Neumann  Report. 
Special suitability for computers of the binary system was 
here brought out strongly, with appropriate influence on the 
design of subsequent computers. 

1950s.  The  binary  system (in  pure  or  modified  form)  became 
known widely as the way to represent numbers inside the 
computers.  Convenient  methods  of  “shrinking”  the  long 
binary  expressions  resulted  in  octal  or  hexadecimal 
representation of numbers. For this reason, Swedberg’s octal 
and Nystrom’s  hexadecimal  (base  16) numeration systems 
became popular for special purposes, if not for common use. 

1965. The binary system played a role in the transmission of the 
first photographs of Mars.
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WHICH BASE IS BEST?

Ten was a poor choice, argued Pascal in 1665. He and many 
later  writers  looked  for  richness  in  divisors (and  consequent 
simpler fractions) and indicated their preference for 12 as the base 
of  our  numeration  system.  For  the  same  reason,  other  writers 
advocated 6 or a multiple of 6. Gelin contended that, relative to 
its size, 8 was even richer in divisors.

On the  assumption  that  the  base  of  the  numeration  system 
ought to  dovetail with the system of weights and measures, the 
French  Metric  Commission  of  the  1790s  considered 
recommending the adoption of base 12 for  common arithmetic 
with  the  system  of  weights  and  measures  similarly 
duodecimalized. Lagrange, who pretended to see no advantage in 
richness  in  divisors,  argued  for  getting  such  dovetailing  by 
decimalizing  weights  and  measures  and  leaving  the  arithmetic 
intact. His view prevailed.

Stein (1826) and Hankel (1874) applied the criterion of the 
Least number of concepts or names needed to express all numbers 
up to some limit L. For L = 1 000 000 base 4 comes out best.

According  to  Thiele  (1889),  taking  into  account  individual  
differences among pupils would be particularly easy with base 4. 
Only 9 significant addition and multiplication facts would have to 
be learned by the slower students, whereas the faster ones could 
learn additional facts.

Swedberg (1708) and many later writers favored some power 
of  2  as  a  base.  This  would  permit  several  halvings without 
encountering fractional numbers. His king, Charles XII, went as 
far as 64 for this purpose. The general tendency was to stay closer 
to  10  by  choosing  8  or  16—as  later  recommended for  use  in 
computers.  As  early  as  1887 Berdellé  pointed  out  that  base  8 
would at once provide the benefits of base 2, since conversion 
between these two bases is a trivial procedure. 

Lagny (1703) saw in the binary system a computational tool to 
help him solve navigational problems. Leibniz (1703), in contrast, 
dreamed cf the new arithmetic as a key to theoretical advances. In 
the long run the facts sustained Lagny’s view.
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Applications  to  electronic  computers  and  other  information 
machines overshadowed the minor theoretical uses.

It has been argued since DeMorgan’s time (1853) that a pupil 
would gain greater insight into common base 10 arithmetic if he 
had some acquaintance with nondecimal  bases.  However,  such 
pedagogical use does not point to a particular nondecimal base. In 
practice the relevant textbooks of the 1960s have often singled 
out either base 5 or base 7.
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FONTENELLE’S ARTICLE

FONTENELLE’S article “Nouvelle Arithmétique Binaire” deserves to 
be  appended in  its  entirety  and in  the  original  French,  so that 
other researchers may check their interpretation against the one 
appearing  in  the  present  volume  (pages  43–45),  where  it  is 
claimed that Fontenelle has usually been misread in the passages 
in which he describes Professor  Lagny’s  work with the binary 
system.

Fontelle’s first  marginal comment “v. les M. page 85” says 
“see  the  Memoires, page  85”  (where  Leibniz’s  “Explication” 
appears),  his  second  “page  88”  refers  to  some  additional 
information  about  Professor  Lagny  that  had  appeared  in  the 
preceding year’s Histoire.

Bernard  le  Bovier  de  Fontenelle  (1657–1757)  became 
“perpetual” Secretary of the Academy of Science in Paris in 1697 
and remained in that post for 42 years. In this capacity he was 
editor of the two chief publications of the Academy, namely, the 
Memoires and  the  Histoire. It  was  the  former  that  contained 
Leibniz’s “Explication” and the latter the editorial comment by 
Fontenelle  entitled  “Nouvelle  Arithmétique  Binaire.”  Both 
appeared in the 1703 volume.
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